This paper focuses on the Szemerédi regularity lemma, a result in the field of extremal graph theory. The lemma says that every graph can be partitioned into bounded equal parts such that most edges of the graph span these partitions,…
This paper focuses on the Szemerédi regularity lemma, a result in the field of extremal graph theory. The lemma says that every graph can be partitioned into bounded equal parts such that most edges of the graph span these partitions, and these edges are distributed in a fairly uniform way. Definitions and notation will be established, leading to explorations of three proofs of the regularity lemma. These are a version of the original proof, a Pythagoras proof utilizing elemental geometry, and a proof utilizing concepts of spectral graph theory. This paper is intended to supplement the proofs with background information about the concepts utilized. Furthermore, it is the hope that this paper will serve as another resource for students and others to begin study of the regularity lemma.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
A distributed sensor network (DSN) is a set of spatially scattered intelligent sensors designed to obtain data across an environment. DSNs are becoming a standard architecture for collecting data over a large area. We need registration of nodal data across…
A distributed sensor network (DSN) is a set of spatially scattered intelligent sensors designed to obtain data across an environment. DSNs are becoming a standard architecture for collecting data over a large area. We need registration of nodal data across the network in order to properly exploit having multiple sensors. One major problem worth investigating is ensuring the integrity of the data received, such as time synchronization. Consider a group of match filter sensors. Each sensor is collecting the same data, and comparing the data collected to a known signal. In an ideal world, each sensor would be able to collect the data without offsets or noise in the system. Two models can be followed from this. First, each sensor could make a decision on its own, and then the decisions could be collected at a ``fusion center'' which could then decide if the signal is present or not. The fusion center can then decide if the signal is present or not based on the number true-or-false decisions that each sensor has made. Alternatively, each sensor could relay the data that it collects to the fusion center, and it could then make a decision based on all of the data that it then receives. Since the fusion center would have more information to base its decision on in the latter case--as opposed to the former case where it only receives a true or false from each sensor--one would expect the latter model to perform better. In fact, this would be the gold standard for detection across a DSN. However, there is random noise in the world that causes corruption of data collection, especially among sensors in a DSN. Each sensor does not collect the data in the exact same way or with the same precision. We classify these imperfections in data collections as offsets, specifically the offset present in the data collected by one sensor with respect to the rest of the sensors in the network. Therefore, reconsider the two models for a DSN described above. We can naively implement either of these models for data collection. Alternatively, we can attempt to estimate the offsets between the sensors and compensate. One could see how it would be expected that estimating the offsets within the DSN would provide better overall results than not finding estimators. This thesis will be structured as follows. First, there will be an extensive investigation into detection theory and the impact that different types of offsets have on sensor networks. Following the theory, an algorithm for estimating the data offsets will be proposed correct for the offsets. Next, we will look at Monte Carlo simulation results to see the impact on sensor performance of data offsets in comparison to a sensor network without offsets present. The algorithm is then implemented, and further experiments will demonstrate sensor performance with offset detection.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)