Matrin 3 and Protein Localization in ALS
Description
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the deterioration of motor neurons. ALS affects about 1 in 20,000 people and leads to death within 2 to 5 years after diagnosis. There is currently no cure for ALS, but there are many genes known to be associated with ALS, such as SOD 1 and C9orf72. Recently, mutations in Matrin 3 were linked to ALS. While 15 mutations in Matrin 3 have been discovered, this study focuses on the four initial mutations, which are the Ser85Cys, Phe115Cys, Pro154Ser, and Thr622Ala mutations. This study attempts to understand the mechanism of how these mutations lead to ALS. The first aim focuses on the role of Matrin mutations in the mislocalization of TDP-43 from the nucleus to the cytoplasm, a pathological hallmark of ALS. We hypothesized expression of mutant Matrin 3 would lead to TDP-43 mislocalization, however the data did not support that hypothesis. The second aim of this study focuses on the mislocalization of TRanscription EXport (TREX) complex proteins within the nucleus. TREX proteins were studied based off of previous experiments suggesting that proteins within this complex bind to Matrin 3. The results showed differences in co-localization between each of these proteins and wild-type and mutant Matrin 3, confirming our earlier results. These findings can help increase our understanding of the mechanism of ALS while also setting the framework for future studies.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2016-12
Agent
- Author (aut): Singh, Gurkaran
- Thesis director: Bowser, Robert
- Committee member: Newbern, Jason
- Committee member: Boehringer, Ashley
- Contributor (ctb): School of Life Sciences
- Contributor (ctb): Barrett, The Honors College