Planning with incomplete user preferences and domain models

152834-Thumbnail Image.png
Description
Current work in planning assumes that user preferences and/or domain dynamics are completely specified in advance, and aims to search for a single solution plan to satisfy these. In many real world scenarios, however, providing a complete specification of user

Current work in planning assumes that user preferences and/or domain dynamics are completely specified in advance, and aims to search for a single solution plan to satisfy these. In many real world scenarios, however, providing a complete specification of user preferences and domain dynamics becomes a time-consuming and error-prone task. More often than not, a user may provide no knowledge or at best partial knowledge of her preferences with respect to a desired plan. Similarly, a domain writer may only be able to determine certain parts, not all, of the model of some actions in a domain. Such modeling issues requires new concepts on what a solution should be, and novel techniques in solving the problem. When user preferences are incomplete, rather than presenting a single plan, the planner must instead provide a set of plans containing one or more plans that are similar to the one that the user prefers. This research first proposes the usage of different measures to capture the quality of such plan sets. These are domain-independent distance measures based on plan elements if no knowledge of the user preferences is given, or the Integrated Preference Function measure in case incomplete knowledge of such preferences is provided. It then investigates various heuristic approaches to generate plan sets in accordance with these measures, and presents empirical results demonstrating the promise of the methods. The second part of this research addresses planning problems with incomplete domain models, specifically those annotated with possible preconditions and effects of actions. It formalizes the notion of plan robustness capturing the probability of success for plans during execution. A method of assessing plan robustness based on the weighted model counting approach is proposed. Two approaches for synthesizing robust plans are introduced. The first one compiles the robust plan synthesis problems to the conformant probabilistic planning problems. The second approximates the robustness measure with lower and upper bounds, incorporating them into a stochastic local search for estimating distance heuristic to a goal state. The resulting planner outperforms a state-of-the-art planner that can handle incomplete domain models in both plan quality and planning time.
Date Created
2014
Agent

Utility of considering multiple alternative rectifications in data cleaning

152158-Thumbnail Image.png
Description
Most data cleaning systems aim to go from a given deterministic dirty database to another deterministic but clean database. Such an enterprise pre–supposes that it is in fact possible for the cleaning process to uniquely recover the clean versions of

Most data cleaning systems aim to go from a given deterministic dirty database to another deterministic but clean database. Such an enterprise pre–supposes that it is in fact possible for the cleaning process to uniquely recover the clean versions of each dirty data tuple. This is not possible in many cases, where the most a cleaning system can do is to generate a (hopefully small) set of clean candidates for each dirty tuple. When the cleaning system is required to output a deterministic database, it is forced to pick one clean candidate (say the "most likely" candidate) per tuple. Such an approach can lead to loss of information. For example, consider a situation where there are three equally likely clean candidates of a dirty tuple. An appealing alternative that avoids such an information loss is to abandon the requirement that the output database be deterministic. In other words, even though the input (dirty) database is deterministic, I allow the reconstructed database to be probabilistic. Although such an approach does avoid the information loss, it also brings forth several challenges. For example, how many alternatives should be kept per tuple in the reconstructed database? Maintaining too many alternatives increases the size of the reconstructed database, and hence the query processing time. Second, while processing queries on the probabilistic database may well increase recall, how would they affect the precision of the query processing? In this thesis, I investigate these questions. My investigation is done in the context of a data cleaning system called BayesWipe that has the capability of producing multiple clean candidates per each dirty tuple, along with the probability that they are the correct cleaned version. I represent these alternatives as tuples in a tuple disjoint probabilistic database, and use the Mystiq system to process queries on it. This probabilistic reconstruction (called BayesWipe–PDB) is compared to a deterministic reconstruction (called BayesWipe–DET)—where the most likely clean candidate for each tuple is chosen, and the rest of the alternatives discarded.
Date Created
2013
Agent

RAProp: ranking tweets by exploiting the tweet/user/web ecosystem

151718-Thumbnail Image.png
Description
The increasing popularity of Twitter renders improved trustworthiness and relevance assessment of tweets much more important for search. However, given the limitations on the size of tweets, it is hard to extract measures for ranking from the tweet's content alone.

The increasing popularity of Twitter renders improved trustworthiness and relevance assessment of tweets much more important for search. However, given the limitations on the size of tweets, it is hard to extract measures for ranking from the tweet's content alone. I propose a method of ranking tweets by generating a reputation score for each tweet that is based not just on content, but also additional information from the Twitter ecosystem that consists of users, tweets, and the web pages that tweets link to. This information is obtained by modeling the Twitter ecosystem as a three-layer graph. The reputation score is used to power two novel methods of ranking tweets by propagating the reputation over an agreement graph based on tweets' content similarity. Additionally, I show how the agreement graph helps counter tweet spam. An evaluation of my method on 16~million tweets from the TREC 2011 Microblog Dataset shows that it doubles the precision over baseline Twitter Search and achieves higher precision than current state of the art method. I present a detailed internal empirical evaluation of RAProp in comparison to several alternative approaches proposed by me, as well as external evaluation in comparison to the current state of the art method.
Date Created
2013
Agent

Connecting users with similar interests for group understanding

151605-Thumbnail Image.png
Description
In most social networking websites, users are allowed to perform interactive activities. One of the fundamental features that these sites provide is to connecting with users of their kind. On one hand, this activity makes online connections visible and tangible;

In most social networking websites, users are allowed to perform interactive activities. One of the fundamental features that these sites provide is to connecting with users of their kind. On one hand, this activity makes online connections visible and tangible; on the other hand, it enables the exploration of our connections and the expansion of our social networks easier. The aggregation of people who share common interests forms social groups, which are fundamental parts of our social lives. Social behavioral analysis at a group level is an active research area and attracts many interests from the industry. Challenges of my work mainly arise from the scale and complexity of user generated behavioral data. The multiple types of interactions, highly dynamic nature of social networking and the volatile user behavior suggest that these data are complex and big in general. Effective and efficient approaches are required to analyze and interpret such data. My work provide effective channels to help connect the like-minded and, furthermore, understand user behavior at a group level. The contributions of this dissertation are in threefold: (1) proposing novel representation of collective tagging knowledge via tag networks; (2) proposing the new information spreader identification problem in egocentric soical networks; (3) defining group profiling as a systematic approach to understanding social groups. In sum, the research proposes novel concepts and approaches for connecting the like-minded, enables the understanding of user groups, and exposes interesting research opportunities.
Date Created
2013
Agent

When is temporal planning really temporal

151471-Thumbnail Image.png
Description
In this dissertation I develop a deep theory of temporal planning well-suited to analyzing, understanding, and improving the state of the art implementations (as of 2012). At face-value the work is strictly theoretical; nonetheless its impact is entirely real and

In this dissertation I develop a deep theory of temporal planning well-suited to analyzing, understanding, and improving the state of the art implementations (as of 2012). At face-value the work is strictly theoretical; nonetheless its impact is entirely real and practical. The easiest portion of that impact to highlight concerns the notable improvements to the format of the temporal fragment of the International Planning Competitions (IPCs). Particularly: the theory I expound upon here is the primary cause of--and justification for--the altered (i) selection of benchmark problems, and (ii) notion of "winning temporal planner". For higher level motivation: robotics, web service composition, industrial manufacturing, business process management, cybersecurity, space exploration, deep ocean exploration, and logistics all benefit from applying domain-independent automated planning technique. Naturally, actually carrying out such case studies has much to offer. For example, we may extract the lesson that reasoning carefully about deadlines is rather crucial to planning in practice. More generally, effectively automating specifically temporal planning is well-motivated from applications. Entirely abstractly, the aim is to improve the theory of automated temporal planning by distilling from its practice. My thesis is that the key feature of computational interest is concurrency. To support, I demonstrate by way of compilation methods, worst-case counting arguments, and analysis of algorithmic properties such as completeness that the more immediately pressing computational obstacles (facing would-be temporal generalizations of classical planning systems) can be dealt with in theoretically efficient manner. So more accurately the technical contribution here is to demonstrate: The computationally significant obstacle to automated temporal planning that remains is just concurrency.
Date Created
2012
Agent

Partial satisfaction planning: representation and solving methods

151144-Thumbnail Image.png
Description
Automated planning problems classically involve finding a sequence of actions that transform an initial state to some state satisfying a conjunctive set of goals with no temporal constraints. But in many real-world problems, the best plan may involve satisfying only

Automated planning problems classically involve finding a sequence of actions that transform an initial state to some state satisfying a conjunctive set of goals with no temporal constraints. But in many real-world problems, the best plan may involve satisfying only a subset of goals or missing defined goal deadlines. For example, this may be required when goals are logically conflicting, or when there are time or cost constraints such that achieving all goals on time may be too expensive. In this case, goals and deadlines must be declared as soft. I call these partial satisfaction planning (PSP) problems. In this work, I focus on particular types of PSP problems, where goals are given a quantitative value based on whether (or when) they are achieved. The objective is to find a plan with the best quality. A first challenge is in finding adequate goal representations that capture common types of goal achievement rewards and costs. One popular representation is to give a single reward on each goal of a planning problem. I further expand on this approach by allowing users to directly introduce utility dependencies, providing for changes of goal achievement reward directly based on the goals a plan achieves. After, I introduce time-dependent goal costs, where a plan incurs penalty if it will achieve a goal past a specified deadline. To solve PSP problems with goal utility dependencies, I look at using state-of-the-art methodologies currently employed for classical planning problems involving heuristic search. In doing so, one faces the challenge of simultaneously determining the best set of goals and plan to achieve them. This is complicated by utility dependencies defined by a user and cost dependencies within the plan. To address this, I introduce a set of heuristics based on combinations using relaxed plans and integer programming formulations. Further, I explore an approach to improve search through learning techniques by using automatically generated state features to find new states from which to search. Finally, the investigation into handling time-dependent goal costs leads us to an improved search technique derived from observations based on solving discretized approximations of cost functions.
Date Created
2012
Agent

Trust and profit sensitive ranking for the deep web and on-line advertisements

151129-Thumbnail Image.png
Description
Ranking is of definitive importance to both usability and profitability of web information systems. While ranking of results is crucial for the accessibility of information to the user, the ranking of online ads increases the profitability of the search provider.

Ranking is of definitive importance to both usability and profitability of web information systems. While ranking of results is crucial for the accessibility of information to the user, the ranking of online ads increases the profitability of the search provider. The scope of my thesis includes both search and ad ranking. I consider the emerging problem of ranking the deep web data considering trustworthiness and relevance. I address the end-to-end deep web ranking by focusing on: (i) ranking and selection of the deep web databases (ii) topic sensitive ranking of the sources (iii) ranking the result tuples from the selected databases. Especially, assessing the trustworthiness and relevances of results for ranking is hard since the currently used link analysis is inapplicable (since deep web records do not have links). I formulated a method---namely SourceRank---to assess the trustworthiness and relevance of the sources based on the inter-source agreement. Secondly, I extend the SourceRank to consider the topic of the agreeing sources in multi-topic environments. Further, I formulate a ranking sensitive to trustworthiness and relevance for the individual results returned by the selected sources. For ad ranking, I formulate a generalized ranking function---namely Click Efficiency (CE)---based on a realistic user click model of ads and documents. The CE ranking considers hitherto ignored parameters of perceived relevance and user dissatisfaction. CE ranking guaranteeing optimal utilities for the click model. Interestingly, I show that the existing ad and document ranking functions are reduced forms of the CE ranking under restrictive assumptions. Subsequently, I extend the CE ranking to include a pricing mechanism, designing a complete auction mechanism. My analysis proves several desirable properties including revenue dominance over popular Vickery-Clarke-Groves (VCG) auctions for the same bid vector and existence of a Nash equilibrium in pure strategies. The equilibrium is socially optimal, and revenue equivalent to the truthful VCG equilibrium. Further, I relax the independence assumption in CE ranking and analyze the diversity ranking problem. I show that optimal diversity ranking is NP-Hard in general, and that a constant time approximation algorithm is not likely.
Date Created
2012
Agent

Bridging the gap between classical logic based formalisms and logic programs

150534-Thumbnail Image.png
Description
Different logic-based knowledge representation formalisms have different limitations either with respect to expressivity or with respect to computational efficiency. First-order logic, which is the basis of Description Logics (DLs), is not suitable for defeasible reasoning due to its monotonic nature.

Different logic-based knowledge representation formalisms have different limitations either with respect to expressivity or with respect to computational efficiency. First-order logic, which is the basis of Description Logics (DLs), is not suitable for defeasible reasoning due to its monotonic nature. The nonmonotonic formalisms that extend first-order logic, such as circumscription and default logic, are expressive but lack efficient implementations. The nonmonotonic formalisms that are based on the declarative logic programming approach, such as Answer Set Programming (ASP), have efficient implementations but are not expressive enough for representing and reasoning with open domains. This dissertation uses the first-order stable model semantics, which extends both first-order logic and ASP, to relate circumscription to ASP, and to integrate DLs and ASP, thereby partially overcoming the limitations of the formalisms. By exploiting the relationship between circumscription and ASP, well-known action formalisms, such as the situation calculus, the event calculus, and Temporal Action Logics, are reformulated in ASP. The advantages of these reformulations are shown with respect to the generality of the reasoning tasks that can be handled and with respect to the computational efficiency. The integration of DLs and ASP presented in this dissertation provides a framework for integrating rules and ontologies for the semantic web. This framework enables us to perform nonmonotonic reasoning with DL knowledge bases. Observing the need to integrate action theories and ontologies, the above results are used to reformulate the problem of integrating action theories and ontologies as a problem of integrating rules and ontologies, thus enabling us to use the computational tools developed in the context of the latter for the former.
Date Created
2012
Agent

Topic sensitive sourcerank: extending sourcerank for performing context-sensitive search over deep-web

150235-Thumbnail Image.png
Description
Source selection is one of the foremost challenges for searching deep-web. For a user query, source selection involves selecting a subset of deep-web sources expected to provide relevant answers to the user query. Existing source selection models employ query-similarity based

Source selection is one of the foremost challenges for searching deep-web. For a user query, source selection involves selecting a subset of deep-web sources expected to provide relevant answers to the user query. Existing source selection models employ query-similarity based local measures for assessing source quality. These local measures are necessary but not sufficient as they are agnostic to source trustworthiness and result importance, which, given the autonomous and uncurated nature of deep-web, have become indispensible for searching deep-web. SourceRank provides a global measure for assessing source quality based on source trustworthiness and result importance. SourceRank's effectiveness has been evaluated in single-topic deep-web environments. The goal of the thesis is to extend sourcerank to a multi-topic deep-web environment. Topic-sensitive sourcerank is introduced as an effective way of extending sourcerank to a deep-web environment containing a set of representative topics. In topic-sensitive sourcerank, multiple sourcerank vectors are created, each biased towards a representative topic. At query time, using the topic of query keywords, a query-topic sensitive, composite sourcerank vector is computed as a linear combination of these pre-computed biased sourcerank vectors. Extensive experiments on more than a thousand sources in multiple domains show 18-85% improvements in result quality over Google Product Search and other existing methods.
Date Created
2011
Agent

An investigation of the cost and accuracy tradeoffs of supplanting AFDs with bayes network in query processing in the presence of incompleteness in autonomous databases

150226-Thumbnail Image.png
Description
As the information available to lay users through autonomous data sources continues to increase, mediators become important to ensure that the wealth of information available is tapped effectively. A key challenge that these information mediators need to handle is the

As the information available to lay users through autonomous data sources continues to increase, mediators become important to ensure that the wealth of information available is tapped effectively. A key challenge that these information mediators need to handle is the varying levels of incompleteness in the underlying databases in terms of missing attribute values. Existing approaches such as Query Processing over Incomplete Autonomous Databases (QPIAD) aim to mine and use Approximate Functional Dependencies (AFDs) to predict and retrieve relevant incomplete tuples. These approaches make independence assumptions about missing values--which critically hobbles their performance when there are tuples containing missing values for multiple correlated attributes. In this thesis, I present a principled probabilis- tic alternative that views an incomplete tuple as defining a distribution over the complete tuples that it stands for. I learn this distribution in terms of Bayes networks. My approach involves min- ing/"learning" Bayes networks from a sample of the database, and using it do both imputation (predict a missing value) and query rewriting (retrieve relevant results with incompleteness on the query-constrained attributes, when the data sources are autonomous). I present empirical studies to demonstrate that (i) at higher levels of incompleteness, when multiple attribute values are missing, Bayes networks do provide a significantly higher classification accuracy and (ii) the relevant possible answers retrieved by the queries reformulated using Bayes networks provide higher precision and recall than AFDs while keeping query processing costs manageable.
Date Created
2011
Agent