Stimulating Contributions to Public Goods Through Information Feedback: Some Experimental Results

128761-Thumbnail Image.png
Description

In traditional public good experiments participants receive an endowment from the experimenter that can be invested in a public good or kept in a private account. In this paper we present an experimental environment where participants can invest time during

In traditional public good experiments participants receive an endowment from the experimenter that can be invested in a public good or kept in a private account. In this paper we present an experimental environment where participants can invest time during five days to contribute to a public good. Participants can make contributions to a linear public good by logging into a web application and performing virtual actions. We compared four treatments, with different group sizes and information of (relative) performance of other groups. We find that information feedback about performance of other groups has a small positive effect if we control for various attributes of the groups. Moreover, we find a significant effect of the contributions of others in the group in the previous day on the number of points earned in the current day. Our results confirm that people participate more when participants in their group participate more, and are influenced by information about the relative performance of other groups.

Date Created
2016-07-26
Agent

Influencing Busy People in a Social Network

128840-Thumbnail Image.png
Description

We identify influential early adopters in a social network, where individuals are resource constrained, to maximize the spread of multiple, costly behaviors. A solution to this problem is especially important for viral marketing. The problem of maximizing influence in a

We identify influential early adopters in a social network, where individuals are resource constrained, to maximize the spread of multiple, costly behaviors. A solution to this problem is especially important for viral marketing. The problem of maximizing influence in a social network is challenging since it is computationally intractable. We make three contributions. First, we propose a new model of collective behavior that incorporates individual intent, knowledge of neighbors actions and resource constraints. Second, we show that the multiple behavior influence maximization is NP-hard. Furthermore, we show that the problem is submodular, implying the existence of a greedy solution that approximates the optimal solution to within a constant. However, since the greedy algorithm is expensive for large networks, we propose efficient heuristics to identify the influential individuals, including heuristics to assign behaviors to the different early adopters. We test our approach on synthetic and real-world topologies with excellent results. We evaluate the effectiveness under three metrics: unique number of participants, total number of active behaviors and network resource utilization. Our heuristics produce 15-51% increase in expected resource utilization over the naïve approach.

Date Created
2016-10-06
Agent

Event analytics on social media: challenges and solutions

153269-Thumbnail Image.png
Description
Social media platforms such as Twitter, Facebook, and blogs have emerged as valuable

- in fact, the de facto - virtual town halls for people to discover, report, share and

communicate with others about various types of events. These events range from

widely-known

Social media platforms such as Twitter, Facebook, and blogs have emerged as valuable

- in fact, the de facto - virtual town halls for people to discover, report, share and

communicate with others about various types of events. These events range from

widely-known events such as the U.S Presidential debate to smaller scale, local events

such as a local Halloween block party. During these events, we often witness a large

amount of commentary contributed by crowds on social media. This burst of social

media responses surges with the "second-screen" behavior and greatly enriches the

user experience when interacting with the event and people's awareness of an event.

Monitoring and analyzing this rich and continuous flow of user-generated content can

yield unprecedentedly valuable information about the event, since these responses

usually offer far more rich and powerful views about the event that mainstream news

simply could not achieve. Despite these benefits, social media also tends to be noisy,

chaotic, and overwhelming, posing challenges to users in seeking and distilling high

quality content from that noise.

In this dissertation, I explore ways to leverage social media as a source of information and analyze events based on their social media responses collectively. I develop, implement and evaluate EventRadar, an event analysis toolbox which is able to identify, enrich, and characterize events using the massive amounts of social media responses. EventRadar contains three automated, scalable tools to handle three core event analysis tasks: Event Characterization, Event Recognition, and Event Enrichment. More specifically, I develop ET-LDA, a Bayesian model and SocSent, a matrix factorization framework for handling the Event Characterization task, i.e., modeling characterizing an event in terms of its topics and its audience's response behavior (via ET-LDA), and the sentiments regarding its topics (via SocSent). I also develop DeMa, an unsupervised event detection algorithm for handling the Event Recognition task, i.e., detecting trending events from a stream of noisy social media posts. Last, I develop CrowdX, a spatial crowdsourcing system for handling the Event Enrichment task, i.e., gathering additional first hand information (e.g., photos) from the field to enrich the given event's context.

Enabled by EventRadar, it is more feasible to uncover patterns that have not been

explored previously and re-validating existing social theories with new evidence. As a

result, I am able to gain deep insights into how people respond to the event that they

are engaged in. The results reveal several key insights into people's various responding

behavior over the event's timeline such the topical context of people's tweets does not

always correlate with the timeline of the event. In addition, I also explore the factors

that affect a person's engagement with real-world events on Twitter and find that

people engage in an event because they are interested in the topics pertaining to

that event; and while engaging, their engagement is largely affected by their friends'

behavior.
Date Created
2014
Agent

Efficient processing of skyline queries on static data sources, data streams and incomplete datasets

153229-Thumbnail Image.png
Description
Skyline queries extract interesting points that are non-dominated and help paint the bigger picture of the data in question. They are valuable in many multi-criteria decision applications and are becoming a staple of decision support systems.

An assumption commonly made by

Skyline queries extract interesting points that are non-dominated and help paint the bigger picture of the data in question. They are valuable in many multi-criteria decision applications and are becoming a staple of decision support systems.

An assumption commonly made by many skyline algorithms is that a skyline query is applied to a single static data source or data stream. Unfortunately, this assumption does not hold in many applications in which a skyline query may involve attributes belonging to multiple data sources and requires a join operation to be performed before the skyline can be produced. Recently, various skyline-join algorithms have been proposed to address this problem in the context of static data sources. However, these algorithms suffer from several drawbacks: they often need to scan the data sources exhaustively to obtain the skyline-join results; moreover, the pruning techniques employed to eliminate tuples are largely based on expensive tuple-to-tuple comparisons. On the other hand, most data stream techniques focus on single stream skyline queries, thus rendering them unsuitable for skyline-join queries.

Another assumption typically made by most of the earlier skyline algorithms is that the data is complete and all skyline attribute values are available. Due to this constraint, these algorithms cannot be applied to incomplete data sources in which some of the attribute values are missing and are represented by NULL values. There exists a definition of dominance for incomplete data, but this leads to undesirable consequences such as non-transitive and cyclic dominance relations both of which are detrimental to skyline processing.

Based on the aforementioned observations, the main goal of the research described in this dissertation is the design and development of a framework of skyline operators that effectively handles three distinct types of skyline queries: 1) skyline-join queries on static data sources, 2) skyline-window-join queries over data streams, and 3) strata-skyline queries on incomplete datasets. This dissertation presents the unique challenges posed by these skyline queries and addresses the shortcomings of current skyline techniques by proposing efficient methods to tackle the added overhead in processing skyline queries on static data sources, data streams, and incomplete datasets.
Date Created
2014
Agent

TensorDB and tensor-relational model (TRM) for efficient tensor-relational operations

152906-Thumbnail Image.png
Description
Multidimensional data have various representations. Thanks to their simplicity in modeling multidimensional data and the availability of various mathematical tools (such as tensor decompositions) that support multi-aspect analysis of such data, tensors are increasingly being used in many application domains

Multidimensional data have various representations. Thanks to their simplicity in modeling multidimensional data and the availability of various mathematical tools (such as tensor decompositions) that support multi-aspect analysis of such data, tensors are increasingly being used in many application domains including scientific data management, sensor data management, and social network data analysis. Relational model, on the other hand, enables semantic manipulation of data using relational operators, such as projection, selection, Cartesian-product, and set operators. For many multidimensional data applications, tensor operations as well as relational operations need to be supported throughout the data life cycle. In this thesis, we introduce a tensor-based relational data model (TRM), which enables both tensor- based data analysis and relational manipulations of multidimensional data, and define tensor-relational operations on this model. Then we introduce a tensor-relational data management system, so called, TensorDB. TensorDB is based on TRM, which brings together relational algebraic operations (for data manipulation and integration) and tensor algebraic operations (for data analysis). We develop optimization strategies for tensor-relational operations in both in-memory and in-database TensorDB. The goal of the TRM and TensorDB is to serve as a single environment that supports the entire life cycle of data; that is, data can be manipulated, integrated, processed, and analyzed.
Date Created
2014
Agent

Software techniques in the compromise of energy and accuracy

152778-Thumbnail Image.png
Description
Software has a great impact on the energy efficiency of any computing system--it can manage the components of a system efficiently or inefficiently. The impact of software is amplified in the context of a wearable computing system used for activity

Software has a great impact on the energy efficiency of any computing system--it can manage the components of a system efficiently or inefficiently. The impact of software is amplified in the context of a wearable computing system used for activity recognition. The design space this platform opens up is immense and encompasses sensors, feature calculations, activity classification algorithms, sleep schedules, and transmission protocols. Design choices in each of these areas impact energy use, overall accuracy, and usefulness of the system. This thesis explores methods software can influence the trade-off between energy consumption and system accuracy. In general the more energy a system consumes the more accurate will be. We explore how finding the transitions between human activities is able to reduce the energy consumption of such systems without reducing much accuracy. We introduce the Log-likelihood Ratio Test as a method to detect transitions, and explore how choices of sensor, feature calculations, and parameters concerning time segmentation affect the accuracy of this method. We discovered an approximate 5X increase in energy efficiency could be achieved with only a 5% decrease in accuracy. We also address how a system's sleep mode, in which the processor enters a low-power state and sensors are turned off, affects a wearable computing platform that does activity recognition. We discuss the energy trade-offs in each stage of the activity recognition process. We find that careful analysis of these parameters can result in great increases in energy efficiency if small compromises in overall accuracy can be tolerated. We call this the ``Great Compromise.'' We found a 6X increase in efficiency with a 7% decrease in accuracy. We then consider how wireless transmission of data affects the overall energy efficiency of a wearable computing platform. We find that design decisions such as feature calculations and grouping size have a great impact on the energy consumption of the system because of the amount of data that is stored and transmitted. For example, storing and transmitting vector-based features such as FFT or DCT do not compress the signal and would use more energy than storing and transmitting the raw signal. The effect of grouping size on energy consumption depends on the feature. For scalar features energy consumption is proportional in the inverse of grouping size, so it's reduced as grouping size goes up. For features that depend on the grouping size, such as FFT, energy increases with the logarithm of grouping size, so energy consumption increases slowly as grouping size increases. We find that compressing data through activity classification and transition detection significantly reduces energy consumption and that the energy consumed for the classification overhead is negligible compared to the energy savings from data compression. We provide mathematical models of energy usage and data generation, and test our ideas using a mobile computing platform, the Texas Instruments Chronos watch.
Date Created
2014
Agent

IISS a framework to influence individuals through social signals on a social network

152541-Thumbnail Image.png
Description
Contemporary online social platforms present individuals with social signals in the form of news feed on their peers' activities. On networks such as Facebook, Quora, network operator decides how that information is shown to an individual. Then the user, with

Contemporary online social platforms present individuals with social signals in the form of news feed on their peers' activities. On networks such as Facebook, Quora, network operator decides how that information is shown to an individual. Then the user, with her own interests and resource constraints selectively acts on a subset of items presented to her. The network operator again, shows that activity to a selection of peers, and thus creating a behavioral loop. That mechanism of interaction and information flow raises some very interesting questions such as: can network operator design social signals to promote a particular activity like sustainability, public health care awareness, or to promote a specific product? The focus of my thesis is to answer that question. In this thesis, I develop a framework to personalize social signals for users to guide their activities on an online platform. As the result, we gradually nudge the activity distribution on the platform from the initial distribution p to the target distribution q. My work is particularly applicable to guiding collaborations, guiding collective actions, and online advertising. In particular, I first propose a probabilistic model on how users behave and how information flows on the platform. The main part of this thesis after that discusses the Influence Individuals through Social Signals (IISS) framework. IISS consists of four main components: (1) Learner: it learns users' interests and characteristics from their historical activities using Bayesian model, (2) Calculator: it uses gradient descent method to compute the intermediate activity distributions, (3) Selector: it selects users who can be influenced to adopt or drop specific activities, (4) Designer: it personalizes social signals for each user. I evaluate the performance of IISS framework by simulation on several network topologies such as preferential attachment, small world, and random. I show that the framework gradually nudges users' activities to approach the target distribution. I use both simulation and mathematical method to analyse convergence properties such as how fast and how close we can approach the target distribution. When the number of activities is 3, I show that for about 45% of target distributions, we can achieve KL-divergence as low as 0.05. But for some other distributions KL-divergence can be as large as 0.5.
Date Created
2014
Agent

Techniques for soundscape retrieval and synthesis

152361-Thumbnail Image.png
Description
The study of acoustic ecology is concerned with the manner in which life interacts with its environment as mediated through sound. As such, a central focus is that of the soundscape: the acoustic environment as perceived by a listener. This

The study of acoustic ecology is concerned with the manner in which life interacts with its environment as mediated through sound. As such, a central focus is that of the soundscape: the acoustic environment as perceived by a listener. This dissertation examines the application of several computational tools in the realms of digital signal processing, multimedia information retrieval, and computer music synthesis to the analysis of the soundscape. Namely, these tools include a) an open source software library, Sirens, which can be used for the segmentation of long environmental field recordings into individual sonic events and compare these events in terms of acoustic content, b) a graph-based retrieval system that can use these measures of acoustic similarity and measures of semantic similarity using the lexical database WordNet to perform both text-based retrieval and automatic annotation of environmental sounds, and c) new techniques for the dynamic, realtime parametric morphing of multiple field recordings, informed by the geographic paths along which they were recorded.
Date Created
2013
Agent

Study of an epidemic multiple behavior diffusion model in a resource constrained social network

152337-Thumbnail Image.png
Description
In contemporary society, sustainability and public well-being have been pressing challenges. Some of the important questions are:how can sustainable practices, such as reducing carbon emission, be encouraged? , How can a healthy lifestyle be maintained?Even though individuals are interested, they

In contemporary society, sustainability and public well-being have been pressing challenges. Some of the important questions are:how can sustainable practices, such as reducing carbon emission, be encouraged? , How can a healthy lifestyle be maintained?Even though individuals are interested, they are unable to adopt these behaviors due to resource constraints. Developing a framework to enable cooperative behavior adoption and to sustain it for a long period of time is a major challenge. As a part of developing this framework, I am focusing on methods to understand behavior diffusion over time. Facilitating behavior diffusion with resource constraints in a large population is qualitatively different from promoting cooperation in small groups. Previous work in social sciences has derived conditions for sustainable cooperative behavior in small homogeneous groups. However, how groups of individuals having resource constraint co-operate over extended periods of time is not well understood, and is the focus of my thesis. I develop models to analyze behavior diffusion over time through the lens of epidemic models with the condition that individuals have resource constraint. I introduce an epidemic model SVRS ( Susceptible-Volatile-Recovered-Susceptible) to accommodate multiple behavior adoption. I investigate the longitudinal effects of behavior diffusion by varying different properties of an individual such as resources,threshold and cost of behavior adoption. I also consider how behavior adoption of an individual varies with her knowledge of global adoption. I evaluate my models on several synthetic topologies like complete regular graph, preferential attachment and small-world and make some interesting observations. Periodic injection of early adopters can help in boosting the spread of behaviors and sustain it for a longer period of time. Also, behavior propagation for the classical epidemic model SIRS (Susceptible-Infected-Recovered-Susceptible) does not continue for an infinite period of time as per conventional wisdom. One interesting future direction is to investigate how behavior adoption is affected when number of individuals in a network changes. The affects on behavior adoption when availability of behavior changes with time can also be examined.
Date Created
2013
Agent

We built this town: raising activity awareness through the workplace using gamification

152310-Thumbnail Image.png
Description
The wide adoption and continued advancement of information and communications technologies (ICT) have made it easier than ever for individuals and groups to stay connected over long distances. These advances have greatly contributed in dramatically changing the dynamics of the

The wide adoption and continued advancement of information and communications technologies (ICT) have made it easier than ever for individuals and groups to stay connected over long distances. These advances have greatly contributed in dramatically changing the dynamics of the modern day workplace to the point where it is now commonplace to see large, distributed multidisciplinary teams working together on a daily basis. However, in this environment, motivating, understanding, and valuing the diverse contributions of individual workers in collaborative enterprises becomes challenging. To address these issues, this thesis presents the goals, design, and implementation of Taskville, a distributed workplace game played by teams on large, public displays. Taskville uses a city building metaphor to represent the completion of individual and group tasks within an organization. Promising results from two usability studies and two longitudinal studies at a multidisciplinary school demonstrate that Taskville supports personal reflection and improves team awareness through an engaging workplace activity.
Date Created
2013
Agent