Human-Aware AI Methods for Active Teaming

171492-Thumbnail Image.png
Description
The future will be replete with Artificial Intelligence (AI) based agents closely collaborating with humans. Although it is challenging to construct such systems for real-world conditions, the Intelligent Tutoring System (ITS) community has proposed several techniques to work closely with

The future will be replete with Artificial Intelligence (AI) based agents closely collaborating with humans. Although it is challenging to construct such systems for real-world conditions, the Intelligent Tutoring System (ITS) community has proposed several techniques to work closely with students. However, there is a need to extend these systems outside the controlled environment of the classroom. More recently, Human-Aware Planning (HAP) community has developed generalized AI techniques for collaborating with humans and providing personalized support or guidance to the collaborators. In this thesis, the take learning from the ITS community is extend to construct such human-aware systems for real-world domains and evaluate them with real stakeholders. First, the applicability of HAP to ITS is demonstrated, by modeling the behavior in a classroom and a state-of-the-art tutoring system called Dragoon. Then these techniques are extended to provide decision support to a human teammate and evaluate the effectiveness of the framework through ablation studies to support students in constructing their plan of study (\ipos). The results show that these techniques are helpful and can support users in their tasks. In the third section of the thesis, an ITS scenario of asking questions (or problems) in active environments is modeled by constructing questions to elicit a human teammate's model of understanding. The framework is evaluated through a user study, where the results show that the queries can be used for eliciting the human teammate's mental model.
Date Created
2022
Agent

Analyzing Failure Modes of Inscrutable Machine Learning Models

171440-Thumbnail Image.png
Description
Machine learning models and in specific, neural networks, are well known for being inscrutable in nature. From image classification tasks and generative techniques for data augmentation, to general purpose natural language models, neural networks are currently the algorithm of preference

Machine learning models and in specific, neural networks, are well known for being inscrutable in nature. From image classification tasks and generative techniques for data augmentation, to general purpose natural language models, neural networks are currently the algorithm of preference that is riding the top of the current artificial intelligence (AI) wave, having experienced the greatest boost in popularity above any other machine learning solution. However, due to their inscrutable design based on the optimization of millions of parameters, it is ever so complex to understand how their decision is influenced nor why (and when) they fail. While some works aim at explaining neural network decisions or making systems to be inherently interpretable the great majority of state of the art machine learning works prioritize performance over interpretability effectively becoming black boxes. Hence, there is still uncertainty in the decision boundaries of these already deployed solutions whose predictions should still be analyzed and taken with care. This becomes even more important when these models are used on sensitive scenarios such as medicine, criminal justice, settings with native inherent social biases or where egregious mispredictions can negatively impact the system or human trust down the line. Thus, the aim of this work is to provide a comprehensive analysis on the failure modes of the state of the art neural networks from three domains: large image classifiers and their misclassifications, generative adversarial networks when used for data augmentation and transformer networks applied to structured representations and reasoning about actions and change.
Date Created
2022
Agent

Incorporating Human Cognitive Limitations Into Sequential Decision Making Problems and Algorithms

171413-Thumbnail Image.png
Description
With improvements in automation and system capabilities, human responsibilities in those advanced systems can get more complicated; greater situational awareness and performance may be asked of human agents in roles such as fail-safe operators. This phenomenon of automation improvements requiring

With improvements in automation and system capabilities, human responsibilities in those advanced systems can get more complicated; greater situational awareness and performance may be asked of human agents in roles such as fail-safe operators. This phenomenon of automation improvements requiring more from humans in the loop, is connected to the well-known “paradox of automation”. Unfortunately, humans have cognitive limitations that can constrain a person's performance on a task. If one considers human cognitive limitations when designing solutions or policies for human agents, then better results are possible. The focus of this dissertation is on improving human involvement in planning and execution for Sequential Decision Making (SDM) problems. Existing work already considers incorporating humans into planning and execution in SDM, but with limited consideration for cognitive limitations. The work herein focuses on how to improve human involvement through problems in motion planning, planning interfaces, Markov Decision Processes (MDP), and human-team scheduling. This done by first discussing the human modeling assumptions currently used in the literature and their shortcomings. Then this dissertation tackles a set of problems by considering problem-specific human cognitive limitations --such as those associated with memory and inference-- as well as use lessons from fields such as cognitive ergonomics.
Date Created
2022
Agent

Probabilistic Imitation Learning for Spatiotemporal Human-Robot Interaction

161994-Thumbnail Image.png
Description
Imitation learning is a promising methodology for teaching robots how to physically interact and collaborate with human partners. However, successful interaction requires complex coordination in time and space, i.e., knowing what to do as well as when to do it.

Imitation learning is a promising methodology for teaching robots how to physically interact and collaborate with human partners. However, successful interaction requires complex coordination in time and space, i.e., knowing what to do as well as when to do it. This dissertation introduces Bayesian Interaction Primitives, a probabilistic imitation learning framework which establishes a conceptual and theoretical relationship between human-robot interaction (HRI) and simultaneous localization and mapping. In particular, it is established that HRI can be viewed through the lens of recursive filtering in time and space. In turn, this relationship allows one to leverage techniques from an existing, mature field and develop a powerful new formulation which enables multimodal spatiotemporal inference in collaborative settings involving two or more agents. Through the development of exact and approximate variations of this method, it is shown in this work that it is possible to learn complex real-world interactions in a wide variety of settings, including tasks such as handshaking, cooperative manipulation, catching, hugging, and more.
Date Created
2021
Agent

A Study of Explainable Decision Support for Longitudinal Sequential Decision Making

161714-Thumbnail Image.png
Description
Decision support systems aid the human-in-the-loop by enhancing the quality of decisions and the ease of making them in complex decision-making scenarios. In the recent years, such systems have been empowered with automated techniques for sequential decision making or planning

Decision support systems aid the human-in-the-loop by enhancing the quality of decisions and the ease of making them in complex decision-making scenarios. In the recent years, such systems have been empowered with automated techniques for sequential decision making or planning tasks to effectively assist and cooperate with the human-in-the-loop. This has received significant recognition in the planning as well as human computer interaction communities as such systems connect the key elements of automated planning in decision support to principles of naturalistic decision making in the HCI community. A decision support system, in addition to providing planning support, must be able to provide intuitive explanations based on specific user queries for proposed decisions to its end users. Using this as motivation, I consider scenarios where the user questions the system's suggestion by providing alternatives (referred to as foils). In response, I empower existing decision support technologies to engage in an interactive explanatory dialogue with the user and provide contrastive explanations based on user-specified foils to reach a consensus on proposed decisions. Furthermore, the foils specified by the user can be indicative of the latent preferences of the user. I use this interpretation to equip existing decision support technologies with three different interaction strategies that utilize the foil to provide revised plan suggestions. Finally, as part of my Master's thesis, I present RADAR-X, an extension of RADAR, a proactive decision support system, that showcases the above mentioned capabilities. Further, I present a user-study evaluation that emphasizes the need for contrastive explanations and a computational evaluation of the mentioned interaction strategies.
Date Created
2021
Agent

Synthesis of Interpretable and Obfuscatory Behaviors in Human-Aware AI Systems

161301-Thumbnail Image.png
Description
In settings where a human and an embodied AI (artificially intelligent) agent coexist, the AI agent has to be capable of reasoning with the human's preconceived notions about the environment as well as with the human's perception limitations. In addition,

In settings where a human and an embodied AI (artificially intelligent) agent coexist, the AI agent has to be capable of reasoning with the human's preconceived notions about the environment as well as with the human's perception limitations. In addition, it should be capable of communicating intentions and objectives effectively to the human-in-the-loop. While acting in the presence of human observers, the AI agent can synthesize interpretable behaviors like explicable, legible, and assistive behaviors by accounting for the human's mental model (inclusive of her sensor model) in its reasoning process. This thesis will study different behavior synthesis algorithms which focus on improving the interpretability of the agent's behavior in the presence of a human observer. Further, this thesis will study how environment redesign strategies can be leveraged to improve the overall interpretability of the agent's behavior. At times, the agent's environment may also consist of purely adversarial entities or mixed entities (i.e. adversarial as well as cooperative entities), that are trying to infer information from the AI agent's behavior. In such settings, it is crucial for the agent to exhibit obfuscatory behavior that prevents sensitive information from falling into the hands of the adversarial entities. This thesis will show that it is possible to synthesize interpretable as well as obfuscatory behaviors using a single underlying algorithmic framework.
Date Created
2021
Agent

Software-defined Situation-aware Cloud Security

158752-Thumbnail Image.png
Description
The use of reactive security mechanisms in enterprise networks can, at times, provide an asymmetric advantage to the attacker. Similarly, the use of a proactive security mechanism like Moving Target Defense (MTD), if performed without analyzing the effects of security

The use of reactive security mechanisms in enterprise networks can, at times, provide an asymmetric advantage to the attacker. Similarly, the use of a proactive security mechanism like Moving Target Defense (MTD), if performed without analyzing the effects of security countermeasures, can lead to security policy and service level agreement violations. In this thesis, I explore the research questions 1) how to model attacker-defender interactions for multi-stage attacks? 2) how to efficiently deploy proactive (MTD) security countermeasures in a software-defined environment for single and multi-stage attacks? 3) how to verify the effects of security and management policies on the network and take corrective actions?

I propose a Software-defined Situation-aware Cloud Security framework, that, 1) analyzes the attacker-defender interactions using an Software-defined Networking (SDN) based scalable attack graph. This research investigates Advanced Persistent Threat (APT) attacks using a scalable attack graph. The framework utilizes a parallel graph partitioning algorithm to generate an attack graph quickly and efficiently. 2) models single-stage and multi-stage attacks (APTs) using the game-theoretic model and provides SDN-based MTD countermeasures. I propose a Markov Game for modeling multi-stage attacks. 3) introduces a multi-stage policy conflict checking framework at the SDN network's application plane. I present INTPOL, a new intent-driven security policy enforcement solution. INTPOL provides a unified language and INTPOL grammar that abstracts the network administrator from the underlying network controller's lexical rules. INTPOL develops a bounded formal model for network service compliance checking, which significantly reduces the number of countermeasures that needs to be deployed. Once the application-layer policy conflicts are resolved, I utilize an Object-Oriented Policy Conflict checking (OOPC) framework that identifies and resolves rule-order dependencies and conflicts between security policies.
Date Created
2020
Agent

The What, When, and How of Strategic Movement in Adversarial Settings: A Syncretic View of AI and Security

158720-Thumbnail Image.png
Description
The field of cyber-defenses has played catch-up in the cat-and-mouse game of finding vulnerabilities followed by the invention of patches to defend against them. With the complexity and scale of modern-day software, it is difficult to ensure that all known

The field of cyber-defenses has played catch-up in the cat-and-mouse game of finding vulnerabilities followed by the invention of patches to defend against them. With the complexity and scale of modern-day software, it is difficult to ensure that all known vulnerabilities are patched; moreover, the attacker, with reconnaissance on their side, will eventually discover and leverage them. To take away the attacker's inherent advantage of reconnaissance, researchers have proposed the notion of proactive defenses such as Moving Target Defense (MTD) in cyber-security. In this thesis, I make three key contributions that help to improve the effectiveness of MTD.

First, I argue that naive movement strategies for MTD systems, designed based on intuition, are detrimental to both security and performance. To answer the question of how to move, I (1) model MTD as a leader-follower game and formally characterize the notion of optimal movement strategies, (2) leverage expert-curated public data and formal representation methods used in cyber-security to obtain parameters of the game, and (3) propose optimization methods to infer strategies at Strong Stackelberg Equilibrium, addressing issues pertaining to scalability and switching costs. Second, when one cannot readily obtain the parameters of the game-theoretic model but can interact with a system, I propose a novel multi-agent reinforcement learning approach that finds the optimal movement strategy. Third, I investigate the novel use of MTD in three domains-- cyber-deception, machine learning, and critical infrastructure networks. I show that the question of what to move poses non-trivial challenges in these domains. To address them, I propose methods for patch-set selection in the deployment of honey-patches, characterize the notion of differential immunity in deep neural networks, and develop optimization problems that guarantee differential immunity for dynamic sensor placement in power-networks.
Date Created
2020
Agent

A Study on Generative Adversarial Networks Exacerbating Social Data Bias

158485-Thumbnail Image.png
Description
Generative Adversarial Networks are designed, in theory, to replicate the distribution of the data they are trained on. With real-world limitations, such as finite network capacity and training set size, they inevitably suffer a yet unavoidable technical failure: mode collapse.

Generative Adversarial Networks are designed, in theory, to replicate the distribution of the data they are trained on. With real-world limitations, such as finite network capacity and training set size, they inevitably suffer a yet unavoidable technical failure: mode collapse. GAN-generated data is not nearly as diverse as the real-world data the network is trained on; this work shows that this effect is especially drastic when the training data is highly non-uniform. Specifically, GANs learn to exacerbate the social biases which exist in the training set along sensitive axes such as gender and race. In an age where many datasets are curated from web and social media data (which are almost never balanced), this has dangerous implications for downstream tasks using GAN-generated synthetic data, such as data augmentation for classification. This thesis presents an empirical demonstration of this phenomenon and illustrates its real-world ramifications. It starts by showing that when asked to sample images from an illustrative dataset of engineering faculty headshots from 47 U.S. universities, unfortunately skewed toward white males, a DCGAN’s generator “imagines” faces with light skin colors and masculine features. In addition, this work verifies that the generated distribution diverges more from the real-world distribution when the training data is non-uniform than when it is uniform. This work also shows that a conditional variant of GAN is not immune to exacerbating sensitive social biases. Finally, this work contributes a preliminary case study on Snapchat’s explosively popular GAN-enabled “My Twin” selfie lens, which consistently lightens the skin tone for women of color in an attempt to make faces more feminine. The results and discussion of the study are meant to caution machine learning practitioners who may unsuspectingly increase the biases in their applications.
Date Created
2020
Agent

Protecting User Privacy with Social Media Data and Mining

158023-Thumbnail Image.png
Description
The pervasive use of the Web has connected billions of people all around the globe and enabled them to obtain information at their fingertips. This results in tremendous amounts of user-generated data which makes users traceable and vulnerable to privacy

The pervasive use of the Web has connected billions of people all around the globe and enabled them to obtain information at their fingertips. This results in tremendous amounts of user-generated data which makes users traceable and vulnerable to privacy leakage attacks. In general, there are two types of privacy leakage attacks for user-generated data, i.e., identity disclosure and private-attribute disclosure attacks. These attacks put users at potential risks ranging from persecution by governments to targeted frauds. Therefore, it is necessary for users to be able to safeguard their privacy without leaving their unnecessary traces of online activities. However, privacy protection comes at the cost of utility loss defined as the loss in quality of personalized services users receive. The reason is that this information of traces is crucial for online vendors to provide personalized services and a lack of it would result in deteriorating utility. This leads to a dilemma of privacy and utility.

Protecting users' privacy while preserving utility for user-generated data is a challenging task. The reason is that users generate different types of data such as Web browsing histories, user-item interactions, and textual information. This data is heterogeneous, unstructured, noisy, and inherently different from relational and tabular data and thus requires quantifying users' privacy and utility in each context separately. In this dissertation, I investigate four aspects of protecting user privacy for user-generated data. First, a novel adversarial technique is introduced to assay privacy risks in heterogeneous user-generated data. Second, a novel framework is proposed to boost users' privacy while retaining high utility for Web browsing histories. Third, a privacy-aware recommendation system is developed to protect privacy w.r.t. the rich user-item interaction data by recommending relevant and privacy-preserving items. Fourth, a privacy-preserving framework for text representation learning is presented to safeguard user-generated textual data as it can reveal private information.
Date Created
2020
Agent