In today’s world, artificial intelligence (AI) is increasingly becoming a part of our daily lives. For this integration to be successful, it’s essential that AI systems can effectively interact with humans. This means making the AI system’s behavior more understandable…
In today’s world, artificial intelligence (AI) is increasingly becoming a part of our daily lives. For this integration to be successful, it’s essential that AI systems can effectively interact with humans. This means making the AI system’s behavior more understandable to users and allowing users to customize the system’s behavior to match their preferences. However, there are significant challenges associated with achieving this goal. One major challenge is that modern AI systems, which have shown great success, often make decisions based on learned representations. These representations, often acquired through deep learning techniques, are typically inscrutable to the users inhibiting explainability and customizability of the system. Additionally, since each user may have unique preferences and expertise, the interaction process must be tailored to each individual. This thesis addresses these challenges that arise in human-AI interaction scenarios, especially in cases where the AI system is tasked with solving sequential decision-making problems. This is achieved by introducing a framework that uses a symbolic interface to facilitate communication between humans and AI agents. This shared vocabulary acts as a bridge, enabling the AI agent to provide explanations in terms that are easy for humans to understand and allowing users to express their preferences using this common language. To address the need for personalization, the framework provides mechanisms that allow users to expand this shared vocabulary, enabling them to express their unique preferences effectively. Moreover, the AI systems are designed to take into account the user’s background knowledge when generating explanations tailored to their specific needs.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
In this work, the problem of multi-object tracking (MOT) is studied, particularly the challenges that arise from object occlusions. A solution based on a principled approximate dynamic programming approach called ADPTrack is presented. ADPTrack relies on existing MOT solutions and…
In this work, the problem of multi-object tracking (MOT) is studied, particularly the challenges that arise from object occlusions. A solution based on a principled approximate dynamic programming approach called ADPTrack is presented. ADPTrack relies on existing MOT solutions and directly improves them. When matching tracks to objects at a particular frame, the proposed approach simulates executions of these existing solutions into future frames to obtain approximate track extensions, from which a comparison of past and future appearance feature information is leveraged to improve overall robustness to occlusion-based error. The proposed solution when applied to the renowned MOT17 dataset empirically demonstrates a 0.7% improvement in the association accuracy (IDF1 metric) over a state-of-the-art baseline that it builds upon while obtaining minor improvements with respect to all other metrics. Moreover, it is shown that this improvement is even more pronounced in scenarios where the camera maintains a fixed position. This implies that the proposed method is effective in addressing MOT issues pertaining to object occlusions.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
In today's world, robotic technology has become increasingly prevalent across various fields such as manufacturing, warehouses, delivery, and household applications. Planning is crucial for robots to solve various tasks in such difficult domains. However, most robots rely heavily on humans…
In today's world, robotic technology has become increasingly prevalent across various fields such as manufacturing, warehouses, delivery, and household applications. Planning is crucial for robots to solve various tasks in such difficult domains. However, most robots rely heavily on humans for world models that enable planning. Consequently, it is not only expensive to create such world models, as it requires human experts who understand the domain as well as robot limitations, these models may also be biased by human embodiment, which can be limiting for robots whose kinematics are not human-like.
This thesis answers the fundamental question: Can we learn such world models automatically? This research shows that we can learn complex world models directly from unannotated and unlabeled demonstrations containing only the configurations of the robot and the objects in the environment. The core contributions of this thesis are the first known approaches for i) task and motion planning that explicitly handle stochasticity, ii) automatically inventing neuro-symbolic state and action abstractions for deterministic and stochastic motion planning, and iii) automatically inventing relational and interpretable world models in the form of symbolic predicates and actions. This thesis also presents a thorough and rigorous empirical experimentation. With experiments in both simulated and real-world settings, this thesis has demonstrated the efficacy and robustness of automatically learned world models in overcoming challenges, generalizing beyond situations encountered during training.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Deep metric learning has recently shown extremely promising results in the classical data domain, creating well-separated feature spaces. This idea was also adapted to quantum computers via Quantum Metric Learning (QMeL). QMeL consists of a 2 step process with a…
Deep metric learning has recently shown extremely promising results in the classical data domain, creating well-separated feature spaces. This idea was also adapted to quantum computers via Quantum Metric Learning (QMeL). QMeL consists of a 2 step process with a classical model to compress the data to fit into the limited number of qubits, then train a Parameterized Quantum Circuit (PQC) to create better separation in Hilbert Space. However, on Noisy Intermediate Scale Quantum (NISQ) devices, QMeL solutions result in high circuit width and depth, both of which limit scalability. The proposed Quantum Polar Metric Learning (QPMeL ), uses a classical model to learn the parameters of the polar form of a qubit. A shallow PQC with Ry and Rz gates is then utilized to create the state and a trainable layer of ZZ(θ)-gates to learn entanglement. The circuit also computes fidelity via a SWAP Test for the proposed Fidelity Triplet Loss function, used to train both classical and quantum components. When compared to QMeL approaches, QPMeL achieves 3X better multi-class separation, while using only 1/2 the number of gates and depth. QPMeL is shown to outperform classical networks with similar configurations, presentinga promising avenue for future research on fully classical models with quantum loss functions.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
In this work, I propose to bridge the gap between human users and adaptive control of robotic systems. The goal is to enable robots to consider user feedback and adjust their behaviors. A critical challenge with designing such systems…
In this work, I propose to bridge the gap between human users and adaptive control of robotic systems. The goal is to enable robots to consider user feedback and adjust their behaviors. A critical challenge with designing such systems is that users are often non-experts, with limited knowledge about the robot's hardware and dynamics. In the domain of human-robot interaction, there exist different modalities of conveying information regarding the desired behavior of the robot, most commonly used are demonstrations, and preferences. While it is challenging for non-experts to provide demonstrations of robot behavior, works that consider preferences expressed as trajectory rankings lead to users providing noisy and possibly conflicting information, leading to slow adaptation or system failures. The end user can be expected to be familiar with the dynamics and how they relate to their desired objectives through repeated interactions with the system. However, due to inadequate knowledge about the system dynamics, it is expected that the user would find it challenging to provide feedback on all dimension's of the system's behavior at all times. Thus, the key innovation of this work is to enable users to provide partial instead of completely specified preferences as with traditional methods that learn from user preferences. In particular, I consider partial preferences in the form of preferences over plant dynamic parameters, for which I propose Adaptive User Control (AUC) of robotic systems. I leverage the correlations between the observed and hidden parameter preferences to deal with incompleteness. I use a sparse Gaussian Process Latent Variable Model formulation to learn hidden variables that represent the relationships between the observed and hidden preferences over the system parameters. This model is trained using Stochastic Variational Inference with a distributed loss formulation. I evaluate AUC in a custom drone-swarm environment and several domains from DeepMind control suite. I compare AUC with the state-of-the-art preference-based reinforcement learning methods that are utilized with user preferences. Results show that AUC outperforms the baselines substantially in terms of sample and feedback complexity.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
This project is a video game implementation of the Filipino ruleset of Mahjong for the purpose of increasing awareness of the Mahjong game and Filipino culture. The game, titled Todas!, is built from scratch using various free resources and contains…
This project is a video game implementation of the Filipino ruleset of Mahjong for the purpose of increasing awareness of the Mahjong game and Filipino culture. The game, titled Todas!, is built from scratch using various free resources and contains a Tutorial for teaching players the basics of the game and a Multiplayer mode that enables remote gameplay for up to four people.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
This paper explores the inner workings of algorithms that computers may use to play Chess. First, we discuss the classical Alpha-Beta algorithm and several improvements, including Quiescence Search, Transposition Tables, and more. Next, we examine the state-of-the-art Monte Carlo Tree…
This paper explores the inner workings of algorithms that computers may use to play Chess. First, we discuss the classical Alpha-Beta algorithm and several improvements, including Quiescence Search, Transposition Tables, and more. Next, we examine the state-of-the-art Monte Carlo Tree Search algorithm and relevant optimizations. After that, we consider a recent algorithm that transforms Alpha-Beta into a “Rollout” search, blending it with Monte Carlo Tree Search under the rollout paradigm. We then discuss our C++ Chess Engine, Homura, and explain its implementation of a hybrid algorithm combining Alpha-Beta with MCTS. Finally, we show that Homura can play master-level Chess at a strength currently exceeding that of our backtracking Alpha-Beta.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Recent breakthroughs in Artificial Intelligence (AI) have brought the dream of developing and deploying complex AI systems that can potentially transform everyday life closer to reality than ever before. However, the growing realization that there might soon be people from…
Recent breakthroughs in Artificial Intelligence (AI) have brought the dream of developing and deploying complex AI systems that can potentially transform everyday life closer to reality than ever before. However, the growing realization that there might soon be people from all walks of life using and working with these systems has also spurred a lot of interest in ensuring that AI systems can efficiently and effectively work and collaborate with their intended users. Chief among the efforts in this direction has been the pursuit of imbuing these agents with the ability to provide intuitive and useful explanations regarding their decisions and actions to end-users. In this dissertation, I will describe various works that I have done in the area of explaining sequential decision-making problems. Furthermore, I will frame the discussions of my work within a broader framework for understanding and analyzing explainable AI (XAI). My works herein tackle many of the core challenges related to explaining automated decisions to users including (1) techniques to address asymmetry in knowledge between the user and the system, (2) techniques to address asymmetry in inferential capabilities, and (3) techniques to address vocabulary mismatch.The dissertation will also describe the works I have done in generating interpretable behavior and policy summarization. I will conclude this dissertation, by using the framework of human-aware explanation as a lens to analyze and understand the current landscape of explainable planning.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
As intelligent agents become pervasive in our lives, they are expected to not only achieve tasks alone but also engage in tasks with humans in the loop. In such cases, the human naturally forms an understanding of the agent, which…
As intelligent agents become pervasive in our lives, they are expected to not only achieve tasks alone but also engage in tasks with humans in the loop. In such cases, the human naturally forms an understanding of the agent, which affects his perception of the agent’s behavior. However, such an understanding inevitably deviates from the ground truth due to reasons such as the human’s lack of understanding of the domain or misunderstanding of the agent’s capabilities. Such differences would result in an unmatched expectation of the agent’s behavior with the agent’s optimal behavior, thereby biasing the human’s assessment of the agent’s performance. In this dissertation, I focus on when these differences are due to a biased belief about domain dynamics. I especially investigate the impact of such a biased belief on the agent’s decision-making process in two different problem settings from a learning perspective. In the first setting, the agent is tasked to accomplish a task alone but must infer the human’s objectives from the human’s feedback on the agent’s behavior in the environment. In such a case, the human biased feedback could mislead the agent to learn a reward function that results in a sub-optimal and, potentially, undesired policy. In the second setting, the agent must accomplish a task with a human observer. Given that the agent’s optimal behavior may not match the human’s expectation due to the biased belief, the agent’s optimal behavior may be viewed as inexplicable, leading to degraded performance and loss of trust. Consequently, this dissertation proposes approaches that (1) endow the agent with the ability to be aware of the human’s biased belief while inferring the human’s objectives, thereby (2) neutralize the impact of the model differences in a reinforcement learning framework, and (3) behave explicably by reconciling the human’s expectation and optimality during decision-making.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
High-order Markov Chains are useful in a variety of situations. However, theseprocesses are limited in the complexity of the domains they can model. In complex
domains, Markov models can require 100’s of Gigabytes of ram leading to the need of a
parsimonious…
High-order Markov Chains are useful in a variety of situations. However, theseprocesses are limited in the complexity of the domains they can model. In complex
domains, Markov models can require 100’s of Gigabytes of ram leading to the need of a
parsimonious model. In this work, I present the Max Markov Chain (MMC). A robust
model for estimating high-order datasets using only first-order parameters. High-order
Markov chains (HMC) and Markov approximations (MTDg) struggle to scale to large
state spaces due to the exponentially growing number of parameters required to model
these domains. MMC can accurately approximate these models using only first-order
parameters given the domain fulfills the MMC assumption. MMC naturally has better
sample efficiency, and the desired spatial and computational advantages over HMCs and
approximate HMCs. I will present evidence demonstrating the effectiveness of MMC in a
variety of domains and compare its performance with HMCs and Markov
approximations.
Human behavior is inherently complex and challenging to model. Due to the high
number of parameters required for traditional Markov models, the excessive computing
requirements make real-time human simulation computationally expensive and
impractical. I argue in certain situations, the behavior of humans follows that of a
sparsely connected Markov model. In this work I focus on the subset of Markov Models
which are just that, sparsely connected.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)