Alzheimer’s disease (AD) is projected to increase, and understanding risk and protective factors could help mitigate this increase. Deficits in Choline, a B-like vitamin, intake or issues with endogenous choline production can lead to an increased risk for AD development.…
Alzheimer’s disease (AD) is projected to increase, and understanding risk and protective factors could help mitigate this increase. Deficits in Choline, a B-like vitamin, intake or issues with endogenous choline production can lead to an increased risk for AD development. To better understand the effects of endogenous choline through the lifespan in the context of Alzheimer pathology, Male and Female 3xTg-AD and NonTg mice, were aged to 16.81 ± 0.13 months. Body weight, food consumption data, and blood plasma samples were collected across the lifespan. A behavioral battery, that consisted of Rotarod, Elevated Plus Maze, and Intellicage, was performed to assess differences across a range of tasks. Hippocampal and cortical tissue were collected to assess pathology. Overall, 3xTg-AD mice had lower choline levels than NonTg at multiple timepoints and Males had higher choline than Females. Furthermore, 3xTg-AD Females had higher levels of both Aβ and Tau pathology than their Male counterparts. In the Intellicage, Females made fewer Percent of Correct Responses during Place Preference. Together these findings show that choline levels through the lifespan, impact the severity of pathology between Males and Female 3xTg-AD mice and behavioral differences between the 3xTg-AD and NonTg mouse models.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Alzheimer’s Disease (AD) is the most prevalent form of dementia and is the sixth leading cause of death in the elderly. Evidence suggests that forms of stress, including prenatal maternal stress (PMS), could exacerbate AD development. To better understand the…
Alzheimer’s Disease (AD) is the most prevalent form of dementia and is the sixth leading cause of death in the elderly. Evidence suggests that forms of stress, including prenatal maternal stress (PMS), could exacerbate AD development. To better understand the mechanism linking PMS and AD, we investigated behavior and specific epigenetic markers of the 3xTg-AD mouse model compared to aged-controls in offspring of stressed mothers and non-stressed mothers.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Stress and stress-related disorders increase the risk of Alzheimer’s Disease (AD) later in life. Some evidence suggests that prenatal maternal stress (PMS) can exacerbate AD. However, the effects of PMS on AD have not been as well studied. Epigenetic changes…
Stress and stress-related disorders increase the risk of Alzheimer’s Disease (AD) later in life. Some evidence suggests that prenatal maternal stress (PMS) can exacerbate AD. However, the effects of PMS on AD have not been as well studied. Epigenetic changes have been shown to contribute to AD and this is a possible mechanism by which PMS could accelerate AD. Thus, the present study aimed to investigate the effects of PMS on histone modifications, which change gene expression through alterations made to chromatin structure and thereby DNA accessibility. We utilized female 3xTG-AD mice and performed spatial and learning memory assessments between 5 and 6 months of age. Tissue was analyzed for AD pathology and epigenetic markers at 6 months of age were assessed PMS was shown to influence histone modifications H3K4me3 and H3K27me3 in a manner known to promote the expression of genes associated with neurodegeneration. Further, PMS impaired spatial memory, and, interestingly, the data resembled the pattern of H3K4me3 expression across groups, suggesting that this epigenetic modification could modulate the learning and memory effects of PMS. While the presence of hallmark AD pathologies were not accelerated by PMS, PMS did increase early tau phosphorylation events. Thus, this evidence suggests that PMS impairs spatial memory through epigenetic modifications and may potentially exacerbate AD later in life.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
The current study investigated whether intermittent restraint stress (IRS) would impair fear extinction learning and lead to increased anxiety and depressive- like behaviors and then be attenuated when IRS ends and a post- stress rest period ensues for 6 weeks.…
The current study investigated whether intermittent restraint stress (IRS) would impair fear extinction learning and lead to increased anxiety and depressive- like behaviors and then be attenuated when IRS ends and a post- stress rest period ensues for 6 weeks. Young adult, male Sprague Dawley rats underwent restraint stress using wire mesh (6hr/daily) for five days with two days off before restraint resumed for three weeks for a total of 23 restraint days. The groups consisted of control (CON) with no restraint other than food and water restriction yoked to the restrained groups, stress immediate (STR-IMM), which were restrained then fear conditioned soon after the end of the IRS paradigm, and stress given a rest for 6 weeks before fear conditioning commenced (STR-R6). Rats were fear conditioned by pairing a 20 second tone with a footshock, then given extinction training for two days (15 tone only on each day). On the first day of extinction, all groups discriminated well on the first trial, but then as trials progressed, STR-R6 discriminated between tone and context less than did CON. On the second day of extinction, STR- IMM froze more to context in the earlier trials than compared to STR-R6 and CON. As trials progressed STR-IMM and STR-R6 froze more to context than compared to CON. Together, CON discriminated between tone and context better than did STR-IMM and STR-R6. Sucrose preference, novelty suppressed feeding, and elevated plus maze was performed after fear extinction was completed. No statistical differences were observed among groups for sucrose preference or novelty suppressed feeding. For the elevated plus maze, STR-IMM entered the open arms and the sum of both open and closed arms fewer than did STR- R6 and CON. We interpret the findings to suggest that the stress groups displayed increased hypervigilance and anxiety with STR-R6 exhibiting a unique phenotype than that of STR-IMM and CON.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Chronic stress impairs spatial working memory, attention set-shifting, and response inhibition. The relationship between these functions and the potential underlying neurocircuitry, such as the medial prefrontal cortex (mPFC), needs further research to understand how chronic stress impacts these functions. This…
Chronic stress impairs spatial working memory, attention set-shifting, and response inhibition. The relationship between these functions and the potential underlying neurocircuitry, such as the medial prefrontal cortex (mPFC), needs further research to understand how chronic stress impacts these functions. This study focused on the infralimbic (IL) and prelimbic (PRL) regions of the mPFC, to examine its involvement in two behavioral tasks, fixed minimum interval (FMI) and radial arm water maze (RAWM), following chronic stress, and the relationship between the two paradigms. A previous study failed to find a significant correlation between spatial working memory and response, both functions mediated by the PFC, even though chronic stress disrupted both outcomes. Thus, the purpose of this study was to investigate the functional activation of the mPFC, following chronic stress in these two paradigms, in order to gain an understanding of the neurocircuitry involved within this region. The behavioral outcomes were performed prior to my involvement in the project, and the results corroborate previous findings that chronic stress impairs response inhibition on FMI and spatial working memory on RAWM. My honors thesis involved quantifying the immunohistochemistry-stained tissue to assess the functional activation of the mPFC. Over the course of six months, my work involved identifying the border between IL and PRL regions by overlaying captured images of tissues, starting at a lower magnification of 40x. Afterwards, images were recaptured at higher magnifications (100x) to quantify Fos-like counts of functional activation. No overt changes were found following chronic stress in Fos-like counts after performance on FMI or RAWM. However, response inhibition on the FMI task showed a relationship with the IL function; non-stressed rats displayed a positive correlation between response inhibition and Fos-like profiles. In contrast, chronically stressed rats revealed a negative correlation between response inhibition and Fos-like profiles. The IL cortex is revealed to facilitate extinction of a learned behavior. Thus, these results present a possible interpretation that there is an association, non-stressed rats suppressing a previously learned response, being formed.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)