Increasing the Effectiveness of Error Messages in a Computer Programming and Simulation Tool

156212-Thumbnail Image.png
Description
Each programming language has a compiler associated with it which helps to identify logical or syntactical errors in the program. These compiler error messages play important part in the form of formative feedback for the programmer. Thus, the error messages

Each programming language has a compiler associated with it which helps to identify logical or syntactical errors in the program. These compiler error messages play important part in the form of formative feedback for the programmer. Thus, the error messages should be constructed carefully, considering the affective and cognitive needs of programmers. This is especially true for systems that are used in educational settings, as the messages are typically seen by students who are novice programmers. If the error messages are hard to understand then they might discourage students from understanding or learning the programming language. The primary goal of this research is to identify methods to make the error messages more effective so that students can understand them better and simultaneously learn from their mistakes. This study is focused on understanding how the error message affects the understanding of the error and the approach students take to solve the error. In this study, three types of error messages were provided to the students. The first type is Default type error message which is an assembler centric error message. The second type is Link type error message which is a descriptive error message along with a link to the appropriate section of the PLP manual. The third type is Example type error message which is again a descriptive error message with an example of the similar type of error along with correction step. All these error types were developed for the PLP assembly language. A think-aloud experiment was designed and conducted on the students. The experiment was later transcribed and coded to understand different approach students take to solve different type of error message. After analyzing the result of the think-aloud experiment it was found that student read the Link type error message completely and they understood and learned from the error message to solve the error. The results also indicated that Link type was more helpful compare to other types of error message. The Link type made error solving process more effective compared to other error types.
Date Created
2018
Agent

Development and Evaluation of an Electrical Engineering and Math Curriculum Module for High School Students

133797-Thumbnail Image.png
Description
Parents in STEM careers are more apt to guide their kids towards STEM careers (Sherburne-Michigan, 2017). There are STEM programs and classes for students who are interested in related fields, but the conundrum is that students need to be interested

Parents in STEM careers are more apt to guide their kids towards STEM careers (Sherburne-Michigan, 2017). There are STEM programs and classes for students who are interested in related fields, but the conundrum is that students need to be interested in order to choose to participate. The goal of this creative project was to introduce engineering concepts in a high school class to reveal and investigate the ways in which engineering concepts can be successfully introduced to a larger student populace to increase interest in engineering programs, courses, and degrees. A lesson plan and corresponding materials - including circuit kits and a simulated ball launching station with graphical display - were made to accomplish this goal. Throughout the lesson students were asked to (1) use given materials to accomplish a goal, (2) predict outcomes based on conceptual understanding and mathematical calculations, (3) test predictions, (4) record data, and (5) analyze data to generate results. The students first created a simple circuit to understand the circuit components and learn general electrical engineering concepts. A simple light dimmer circuit let students demonstrate understanding of electrical concepts (e.g., voltage, current resistance) before using the circuit to a simulated motor in order to launch a ball. The students were then asked to predict the time and height of a ball launched with various settings of their control circuit. The students were able to test their theories with the simulated launcher test set up shown in Figure 25 and collect data to create a parabolic height versus time graph. Based on the measured graph, the students were able to record their results and compare calculated values to real-world measured values. The results of the study suggest ways to introduce students to engineering while developing hands-on concept modeling of projectile motion and circuit design in math classrooms. Additionally, this lesson identifies a rich topic for teachers and STEM education researchers to explore lesson plans with interdisciplinary connections to engineering. This report will include the inspiration for the product, related work, iterative design process, and the final design. This information will be followed by user feedback, a project reflection, and lessons learned. The report will conclude with a summary and a discussion of future work.
Date Created
2018-05
Agent

Effects of Error Messages on a Student’s Ability to Understand and Fix Programming Errors

156059-Thumbnail Image.png
Description
Assemblers and compilers provide feedback to a programmer in the form of error messages. These error messages become input to the debugging model of the programmer. For the programmer to fix an error, they should first locate the error in

Assemblers and compilers provide feedback to a programmer in the form of error messages. These error messages become input to the debugging model of the programmer. For the programmer to fix an error, they should first locate the error in the program, understand what is causing that error, and finally resolve that error. Error messages play an important role in all three stages of fixing of errors. This thesis studies the effects of error messages in the context of teaching programming. Given an error message, this work investigates how it effects student’s way of 1) understanding the error, and 2) fixing the error. As part of the study, three error message types were developed – Default, Link and Example, to better understand the effects of error messages. The Default type provides an assembler-centric single line error message, the Link type provides a program-centric detailed error description with a hyperlink for more information, and the Example type provides a program centric detailed error description with a relevant example. All these error message types were developed for assembly language programming. A think aloud programming exercise was conducted as part of the study to capture the student programmer’s knowledge model. Different codes were developed to analyze the data collected as part of think aloud exercise. After transcribing, coding, and analyzing the data, it was found that the Link type of error message helped to fix the error in less time and with fewer steps. Among the three types, the Link type of error message also resulted in a significantly higher ratio of correct to incorrect steps taken by the programmer to fix the error.
Date Created
2017
Agent

Analysis of hardware usage of shuffle instruction based performance optimization in the Blinds-II image quality assessment algorithm

155837-Thumbnail Image.png
Description
With the advent of GPGPU, many applications are being accelerated by using CUDA programing paradigm. We are able to achieve around 10x -100x speedups by simply porting the application on to the GPU and running the parallel chunk of code

With the advent of GPGPU, many applications are being accelerated by using CUDA programing paradigm. We are able to achieve around 10x -100x speedups by simply porting the application on to the GPU and running the parallel chunk of code on its multi cored SIMT (Single instruction multiple thread) architecture. But for optimal performance it is necessary to make sure that all the GPU resources are efficiently used, and the latencies in the application are minimized. For this, it is essential to monitor the Hardware usage of the algorithm and thus diagnose the compute and memory bottlenecks in the implementation. In the following thesis, we will be analyzing the mapping of CUDA implementation of BLIINDS-II algorithm on the underlying GPU hardware, and come up with a Kepler architecture specific solution of using shuffle instruction via CUB library to tackle the two major bottlenecks in the algorithm. Experiments were conducted to convey the advantage of using shuffle instru3ction in algorithm over only using shared memory as a buffer to global memory. With the new implementation of BLIINDS-II algorithm using CUB library, a speedup of around 13.7% was achieved.
Date Created
2017
Agent

Hardware Acceleration of Most Apparent Distortion Image Quality Assessment Algorithm on FPGA Using OpenCL

155631-Thumbnail Image.png
Description
The information era has brought about many technological advancements in the past

few decades, and that has led to an exponential increase in the creation of digital images and

videos. Constantly, all digital images go through some image processing algorithm for

various reasons

The information era has brought about many technological advancements in the past

few decades, and that has led to an exponential increase in the creation of digital images and

videos. Constantly, all digital images go through some image processing algorithm for

various reasons like compression, transmission, storage, etc. There is data loss during this

process which leaves us with a degraded image. Hence, to ensure minimal degradation of

images, the requirement for quality assessment has become mandatory. Image Quality

Assessment (IQA) has been researched and developed over the last several decades to

predict the quality score in a manner that agrees with human judgments of quality. Modern

image quality assessment (IQA) algorithms are quite effective at prediction accuracy, and

their development has not focused on improving computational performance. The existing

serial implementation requires a relatively large run-time on the order of seconds for a single

frame. Hardware acceleration using Field programmable gate arrays (FPGAs) provides

reconfigurable computing fabric that can be tailored for a broad range of applications.

Usually, programming FPGAs has required expertise in hardware descriptive languages

(HDLs) or high-level synthesis (HLS) tool. OpenCL is an open standard for cross-platform,

parallel programming of heterogeneous systems along with Altera OpenCL SDK, enabling

developers to use FPGA's potential without extensive hardware knowledge. Hence, this

thesis focuses on accelerating the computationally intensive part of the most apparent

distortion (MAD) algorithm on FPGA using OpenCL. The results are compared with CPU

implementation to evaluate performance and efficiency gains.
Date Created
2017
Agent

Analysis and Performance Optimization of a GPGPU Implementation of Image Quality Assessment (IQA) Algorithm VSNR

155292-Thumbnail Image.png
Description
Image processing has changed the way we store, view and share images. One important component of sharing images over the networks is image compression. Lossy image compression techniques compromise the quality of images to reduce their size. To ensure that

Image processing has changed the way we store, view and share images. One important component of sharing images over the networks is image compression. Lossy image compression techniques compromise the quality of images to reduce their size. To ensure that the distortion of images due to image compression is not highly detectable by humans, the perceived quality of an image needs to be maintained over a certain threshold. Determining this threshold is best done using human subjects, but that is impractical in real-world scenarios. As a solution to this issue, image quality assessment (IQA) algorithms are used to automatically compute a fidelity score of an image.

However, poor performance of IQA algorithms has been observed due to complex statistical computations involved. General Purpose Graphics Processing Unit (GPGPU) programming is one of the solutions proposed to optimize the performance of these algorithms.

This thesis presents a Compute Unified Device Architecture (CUDA) based optimized implementation of full reference IQA algorithm, Visual Signal to Noise Ratio (VSNR) that uses M-level 2D Discrete Wavelet Transform (DWT) with 9/7 biorthogonal filters among other statistical computations. The presented implementation is tested upon four different image quality databases containing images with multiple distortions and sizes ranging from 512 x 512 to 1600 x 1280. The CUDA implementation of VSNR shows a speedup of over 32x for 1600 x 1280 images. It is observed that the speedup scales with the increase in size of images. The results showed that the implementation is fast enough to use VSNR on high definition videos with a frame rate of 60 fps. This work presents the optimizations made due to the use of GPU’s constant memory and reuse of allocated memory on the GPU. Also, it shows the performance improvement using profiler driven GPGPU development in CUDA. The presented implementation can be deployed in production combined with existing applications.
Date Created
2017
Agent

An analysis of the memory bottleneck and cache performance of most apparent distortion image quality assessment algorithm on GPU

155167-Thumbnail Image.png
Description
As digital images are transmitted over the network or stored on a disk, image processing is done as part of the standard for efficient storage and bandwidth. This causes some amount of distortion or artifacts in the image which demands

As digital images are transmitted over the network or stored on a disk, image processing is done as part of the standard for efficient storage and bandwidth. This causes some amount of distortion or artifacts in the image which demands the need for quality assessment. Subjective image quality assessment is expensive, time consuming and influenced by the subject's perception. Hence, there is a need for developing mathematical models that are capable of predicting the quality evaluation. With the advent of the information era and an exponential growth in image/video generation and consumption, the requirement for automated quality assessment has become mandatory to assess the degradation. The last few decades have seen research on automated image quality assessment (IQA) algorithms gaining prominence. However, the focus has been on achieving better predication accuracy, and not on improving computational performance. As a result, existing serial implementations require a lot of time in processing a single frame. In the last 5 years, research on general-purpose graphic processing unit (GPGPU) based image quality assessment (IQA) algorithm implementation has shown promising results for single images. Still, the implementations are not efficient enough for deployment in real world applications, especially for live videos at high resolution. Hence, in this thesis, it is proposed that microarchitecture-conscious coding on a graphics processing unit (GPU) combined with detailed understanding of the image quality assessment (IQA) algorithm can result in non-trivial speedups without compromising quality prediction accuracy. This document focusses on the microarchitectural analysis of the most apparent distortion (MAD) algorithm. The results are analyzed in-depth and one of the major bottlenecks is identified. With the knowledge of underlying microarchitecture, the implementation is restructured thereby resolving the bottleneck and improving the performance.
Date Created
2016
Agent

The effect of embedded questions in programming education videos

155136-Thumbnail Image.png
Description
One of the primary objective in a computer science related course is for students to be able to write programs implementing the concepts covered in that course. In educational psychology, however, learning gains are more commonly measured using recall or

One of the primary objective in a computer science related course is for students to be able to write programs implementing the concepts covered in that course. In educational psychology, however, learning gains are more commonly measured using recall or problem solving questions. While these types of questions are relevant to computer science exams, they do not necessarily reflect a student’s ability to apply concepts by writing an original program to solve a novel problem.

This thesis investigates the effectiveness of including questions within instructional multimedia content to improve student performance on a related programming assignment. Similar techniques have proven effective in educational psychology research using other measures. The objective of this thesis is to apply educational techniques used in other domains to an experiment with real world measures of students in a computer science course. The findings of this paper demonstrate that the techniques used were promising in improving student performance on a programming assignment.
Date Created
2016
Agent

GPGPU based implementation of BLIINDS-II NR-IQA

155003-Thumbnail Image.png
Description
The technological advances in the past few decades have made possible creation and consumption of digital visual content at an explosive rate. Consequently, there is a need for efficient quality monitoring systems to ensure minimal degradation of images and videos

The technological advances in the past few decades have made possible creation and consumption of digital visual content at an explosive rate. Consequently, there is a need for efficient quality monitoring systems to ensure minimal degradation of images and videos during various processing operations like compression, transmission, storage etc. Objective Image Quality Assessment (IQA) algorithms have been developed that predict quality scores which match well with human subjective quality assessment. However, a lot of research still remains to be done before IQA algorithms can be deployed in real world systems. Long runtimes for one frame of image is a major hurdle. Graphics Processing Units (GPUs), equipped with massive number of computational cores, provide an opportunity to accelerate IQA algorithms by performing computations in parallel. Indeed, General Purpose Graphics Processing Units (GPGPU) techniques have been applied to a few Full Reference IQA algorithms which fall under the. We present a GPGPU implementation of Blind Image Integrity Notator using DCT Statistics (BLIINDS-II), which falls under the No Reference IQA algorithm paradigm. We have been able to achieve a speedup of over 30x over the previous CPU version of this algorithm. We test our implementation using various distorted images from the CSIQ database and present the performance trends observed. We achieve a very consistent performance of around 9 milliseconds per distorted image, which made possible the execution of over 100 images per second (100 fps).
Date Created
2016
Agent

MOOCLink: linking and maintaining qulity of data provided by various MOOC providers

154800-Thumbnail Image.png
Description
The concept of Linked Data is gaining widespread popularity and importance. The method of publishing and linking structured data on the web is called Linked Data. Emergence of Linked Data has made it possible to make sense of huge data,

The concept of Linked Data is gaining widespread popularity and importance. The method of publishing and linking structured data on the web is called Linked Data. Emergence of Linked Data has made it possible to make sense of huge data, which is scattered all over the web, and link multiple heterogeneous sources. This leads to the challenge of maintaining the quality of Linked Data, i.e., ensuring outdated data is removed and new data is included. The focus of this thesis is devising strategies to effectively integrate data from multiple sources, publish it as Linked Data, and maintain the quality of Linked Data. The domain used in the study is online education. With so many online courses offered by Massive Open Online Courses (MOOC), it is becoming increasingly difficult for an end user to gauge which course best fits his/her needs.

Users are spoilt for choices. It would be very helpful for them to make a choice if there is a single place where they can visually compare the offerings of various MOOC providers for the course they are interested in. Previous work has been done in this area through the MOOCLink project that involved integrating data from Coursera, EdX, and Udacity and generation of linked data, i.e. Resource Description Framework (RDF) triples.

The research objective of this thesis is to determine a methodology by which the quality

of data available through the MOOCLink application is maintained, as there are lots of new courses being constantly added and old courses being removed by data providers. This thesis presents the integration of data from various MOOC providers and algorithms for incrementally updating linked data to maintain their quality and compare it against a naïve approach in order to constantly keep the users engaged with up-to-date data. A master threshold value was determined through experiments and analysis that quantifies one algorithm being better than the other in terms of time efficiency. An evaluation of the tool shows the effectiveness of the algorithms presented in this thesis.
Date Created
2016
Agent