Optimization of multi-channel BCH error decoding for common cases

153668-Thumbnail Image.png
Description
Error correcting systems have put increasing demands on system designers, both due to increasing error correcting requirements and higher throughput targets. These requirements have led to greater silicon area, power consumption and have forced system designers to make trade-offs in

Error correcting systems have put increasing demands on system designers, both due to increasing error correcting requirements and higher throughput targets. These requirements have led to greater silicon area, power consumption and have forced system designers to make trade-offs in Error Correcting Code (ECC) functionality. Solutions to increase the efficiency of ECC systems are very important to system designers and have become a heavily researched area.

Many such systems incorporate the Bose-Chaudhuri-Hocquenghem (BCH) method of error correcting in a multi-channel configuration. BCH is a commonly used code because of its configurability, low storage overhead, and low decoding requirements when compared to other codes. Multi-channel configurations are popular with system designers because they offer a straightforward way to increase bandwidth. The ECC hardware is duplicated for each channel and the throughput increases linearly with the number of channels. The combination of these two technologies provides a configurable and high throughput ECC architecture.

This research proposes a new method to optimize a BCH error correction decoder in multi-channel configurations. In this thesis, I examine how error frequency effects the utilization of BCH hardware. Rather than implement each decoder as a single pipeline of independent decoding stages, the channels are considered together and served by a pool of decoding stages. Modified hardware blocks for handling common cases are included and the pool is sized based on an acceptable, but negligible decrease in performance.
Date Created
2015
Agent

Toward small community discovery in social networks

153618-Thumbnail Image.png
Description
A community in a social network can be viewed as a structure formed by individuals who share similar interests. Not all communities are explicit; some may be hidden in a large network. Therefore, discovering these hidden communities becomes an interesting

A community in a social network can be viewed as a structure formed by individuals who share similar interests. Not all communities are explicit; some may be hidden in a large network. Therefore, discovering these hidden communities becomes an interesting problem. Researchers from a number of fields have developed algorithms to tackle this problem.

Besides the common feature above, communities within a social network have two unique characteristics: communities are mostly small and overlapping. Unfortunately, many traditional algorithms have difficulty recognizing these small communities (often called the resolution limit problem) as well as overlapping communities.

In this work, two enhanced community detection techniques are proposed for re-working existing community detection algorithms to find small communities in social networks. One method is to modify the modularity measure within the framework of the traditional Newman-Girvan algorithm so that more small communities can be detected. The second method is to incorporate a preprocessing step into existing algorithms by changing edge weights inside communities. Both methods help improve community detection performance while maintaining or improving computational efficiency.
Date Created
2015
Agent

A framework for screening experiments and modelling in complex systems

153607-Thumbnail Image.png
Description
Complex systems are pervasive in science and engineering. Some examples include complex engineered networks such as the internet, the power grid, and transportation networks. The complexity of such systems arises not just from their size, but also from their structure,

Complex systems are pervasive in science and engineering. Some examples include complex engineered networks such as the internet, the power grid, and transportation networks. The complexity of such systems arises not just from their size, but also from their structure, operation (including control and management), evolution over time, and that people are involved in their design and operation. Our understanding of such systems is limited because their behaviour cannot be characterized using traditional techniques of modelling and analysis.

As a step in model development, statistically designed screening experiments may be used to identify the main effects and interactions most significant on a response of a system. However, traditional approaches for screening are ineffective for complex systems because of the size of the experimental design. Consequently, the factors considered are often restricted, but this automatically restricts the interactions that may be identified as well. Alternatively, the designs are restricted to only identify main effects, but this then fails to consider any possible interactions of the factors.

To address this problem, a specific combinatorial design termed a locating array is proposed as a screening design for complex systems. Locating arrays exhibit logarithmic growth in the number of factors because their focus is on identification rather than on measurement. This makes practical the consideration of an order of magnitude more factors in experimentation than traditional screening designs.

As a proof-of-concept, a locating array is applied to screen for main effects and low-order interactions on the response of average transport control protocol (TCP) throughput in a simulation model of a mobile ad hoc network (MANET). A MANET is a collection of mobile wireless nodes that self-organize without the aid of any centralized control or fixed infrastructure. The full-factorial design for the MANET considered is infeasible (with over 10^{43} design points) yet a locating array has only 421 design points.

In conjunction with the locating array, a ``heavy hitters'' algorithm is developed to identify the influential main effects and two-way interactions, correcting for the non-normal distribution of the average throughput, and uneven coverage of terms in the locating array. The significance of the identified main effects and interactions is validated independently using the statistical software JMP.

The statistical characteristics used to evaluate traditional screening designs are also applied to locating arrays.

These include the matrix of covariance, fraction of design space, and aliasing, among others. The results lend additional support to the use of locating arrays as screening designs.

The use of locating arrays as screening designs for complex engineered systems is promising as they yield useful models. This facilitates quantitative evaluation of architectures and protocols and contributes to our understanding of complex engineered networks.
Date Created
2015
Agent

Breaking hash-tag detection algorithm for social media (Twitter)

153574-Thumbnail Image.png
Description
In trading, volume is a measure of how much stock has been exchanged in a given period of time. Since every stock is distinctive and has an alternate measure of shares, volume can be contrasted with historical volume inside a

In trading, volume is a measure of how much stock has been exchanged in a given period of time. Since every stock is distinctive and has an alternate measure of shares, volume can be contrasted with historical volume inside a stock to spot changes. It is likewise used to affirm value patterns, breakouts, and spot potential reversals. In my thesis, I hypothesize that the concept of trading volume can be extrapolated to social media (Twitter).

The ubiquity of social media, especially Twitter, in financial market has been overly resonant in the past couple of years. With the growth of its (Twitter) usage by news channels, financial experts and pandits, the global economy does seem to hinge on 140 characters. By analyzing the number of tweets hash tagged to a stock, a strong relation can be established between the number of people talking about it, to the trading volume of the stock.

In my work, I overt this relation and find a state of the breakout when the volume goes beyond a characterized support or resistance level.
Date Created
2015
Agent

On choosability and paintability of graphs

153556-Thumbnail Image.png
Description
Let $G=(V,E)$ be a graph. A \emph{list assignment} $L$ for $G$ is a function from

$V$ to subsets of the natural numbers. An $L$-\emph{coloring} is a function $f$

with domain $V$ such that $f(v)\in L(v)$ for all vertices $v\in V$ and $f(x)\ne

Let $G=(V,E)$ be a graph. A \emph{list assignment} $L$ for $G$ is a function from

$V$ to subsets of the natural numbers. An $L$-\emph{coloring} is a function $f$

with domain $V$ such that $f(v)\in L(v)$ for all vertices $v\in V$ and $f(x)\ne f(y)$

whenever $xy\in E$. If $|L(v)|=t$ for all $v\in V$ then $L$ is a $t$-\emph{list

assignment}. The graph $G$ is $t$-choosable if for every $t$-list assignment $L$

there is an $L$-coloring. The least $t$ such that $G$ is $t$-choosable is called

the list chromatic number of $G$, and is denoted by $\ch(G)$. The complete multipartite

graph with $k$ parts, each of size $s$ is denoted by $K_{s*k}$. Erd\H{o}s et al.

suggested the problem of determining $\ensuremath{\ch(K_{s*k})}$, and showed that

$\ch(K_{2*k})=k$. Alon gave bounds of the form $\Theta(k\log s)$. Kierstead proved

the exact bound $\ch(K_{3*k})=\lceil\frac{4k-1}{3}\rceil$. Here it is proved that

$\ch(K_{4*k})=\lceil\frac{3k-1}{2}\rceil$.

An online version of the list coloring problem was introduced independently by Schauz

and Zhu. It can be formulated as a game between two players, Alice and Bob. Alice

designs lists of colors for all vertices, but does not tell Bob, and is allowed to

change her mind about unrevealed colors as the game progresses. On her $i$-th turn

Alice reveals all vertices with $i$ in their list. On his $i$-th turn Bob decides,

irrevocably, which (independent set) of these vertices to color with $i$. For a

function $l$ from $V$ to the natural numbers, Bob wins the $l$-\emph{game} if

eventually he colors every vertex $v$ before $v$ has had $l(v)+1$ colors of its

list revealed by Alice; otherwise Alice wins. The graph $G$ is $l$-\emph{online

choosable} or \emph{$l$-paintable} if Bob has a strategy to win the $l$-game. If

$l(v)=t$ for all $v\in V$ and $G$ is $l$-paintable, then $G$ is t-paintable.

The \emph{online list chromatic number }of $G$ is the least $t$ such that $G$

is $t$-paintable, and is denoted by $\ensuremath{\ch^{\mathrm{OL}}(G)}$. Evidently,

$\ch^{\mathrm{OL}}(G)\geq\ch(G)$. Zhu conjectured that the gap $\ch^{\mathrm{OL}}(G)-\ch(G)$

can be arbitrarily large. However there are only a few known examples with this gap

equal to one, and none with larger gap. This conjecture is explored in this thesis.

One of the obstacles is that there are not many graphs whose exact list coloring

number is known. This is one of the motivations for establishing new cases of Erd\H{o}s'

problem. Here new examples of graphs with gap one are found, and related technical

results are developed as tools for attacking Zhu's conjecture.

The square $G^{2}$ of a graph $G$ is formed by adding edges between all vertices

at distance $2$. It was conjectured that every graph $G$ satisfies $\chi(G^{2})=\ch(G^{2})$.

This was recently disproved for specially constructed graphs. Here it is shown that

a graph arising naturally in the theory of cellular networks is also a counterexample.
Date Created
2015
Agent

Controversy analysis: clustering and ranking polarized networks with visualizations

153478-Thumbnail Image.png
Description
US Senate is the venue of political debates where the federal bills are formed and voted. Senators show their support/opposition along the bills with their votes. This information makes it possible to extract the polarity of the senators. Similarly, blogosphere

US Senate is the venue of political debates where the federal bills are formed and voted. Senators show their support/opposition along the bills with their votes. This information makes it possible to extract the polarity of the senators. Similarly, blogosphere plays an increasingly important role as a forum for public debate. Authors display sentiment toward issues, organizations or people using a natural language.

In this research, given a mixed set of senators/blogs debating on a set of political issues from opposing camps, I use signed bipartite graphs for modeling debates, and I propose an algorithm for partitioning both the opinion holders (senators or blogs) and the issues (bills or topics) comprising the debate into binary opposing camps. Simultaneously, my algorithm scales the entities on a univariate scale. Using this scale, a researcher can identify moderate and extreme senators/blogs within each camp, and polarizing versus unifying issues. Through performance evaluations I show that my proposed algorithm provides an effective solution to the problem, and performs much better than existing baseline algorithms adapted to solve this new problem. In my experiments, I used both real data from political blogosphere and US Congress records, as well as synthetic data which were obtained by varying polarization and degree distribution of the vertices of the graph to show the robustness of my algorithm.

I also applied my algorithm on all the terms of the US Senate to the date for longitudinal analysis and developed a web based interactive user interface www.PartisanScale.com to visualize the analysis.

US politics is most often polarized with respect to the left/right alignment of the entities. However, certain issues do not reflect the polarization due to political parties, but observe a split correlating to the demographics of the senators, or simply receive consensus. I propose a hierarchical clustering algorithm that identifies groups of bills that share the same polarization characteristics. I developed a web based interactive user interface www.ControversyAnalysis.com to visualize the clusters while providing a synopsis through distribution charts, word clouds, and heat maps.
Date Created
2015
Agent

Economical apects of resource allocation under discounts

153342-Thumbnail Image.png
Description
Resource allocation is one of the most challenging issues policy decision makers must address. The objective of this thesis is to explore the resource allocation from an economical perspective, i.e., how to purchase resources in order to satisfy customers' requests.

Resource allocation is one of the most challenging issues policy decision makers must address. The objective of this thesis is to explore the resource allocation from an economical perspective, i.e., how to purchase resources in order to satisfy customers' requests. In this thesis, we attend to answer the question: when and how to buy resources to fulfill customers' demands with minimum costs?

The first topic studied in this thesis is resource allocation in cloud networks. Cloud computing heralded an era where resources (such as computation and storage) can be scaled up and down elastically and on demand. This flexibility is attractive for its cost effectiveness: the cloud resource price depends on the actual utilization over time. This thesis studies two critical problems in cloud networks, focusing on the economical aspects of the resource allocation in the cloud/virtual networks, and proposes six algorithms to address the resource allocation problems for different discount models. The first problem attends a scenario where the virtual network provider offers different contracts to the service provider. Four algorithms for resource contract migration are proposed under two pricing models: Pay-as-You-Come and Pay-as-You-Go. The second problem explores a scenario where a cloud provider offers k contracts each with a duration and a rate respectively and a customer buys these contracts in order to satisfy its resource demand. This work shows that this problem can be seen as a 2-dimensional generalization of the classic online parking permit problem, and present a k-competitive online algorithm and an optimal online algorithm.

The second topic studied in this thesis is to explore how resource allocation and purchasing strategies work in our daily life. For example, is it worth buying a Yoga pass which costs USD 100 for ten entries, although it will expire at the end of this year? Decisions like these are part of our daily life, yet, not much is known today about good online strategies to buy discount vouchers with expiration dates. This work hence introduces a Discount Voucher Purchase Problem (DVPP). It aims to optimize the strategies for buying discount vouchers, i.e., coupons, vouchers, groupons which are valid only during a certain time period. The DVPP comes in three flavors: (1) Once Expire Lose Everything (OELE): Vouchers lose their entire value after expiration. (2) Once Expire Lose Discount (OELD): Vouchers lose their discount value after expiration. (3) Limited Purchasing Window (LPW): Vouchers have the property of OELE and can only be bought during a certain time window.

This work explores online algorithms with a provable competitive ratio against a clairvoyant offline algorithm, even in the worst case. In particular, this work makes the following contributions: we present a 4-competitive algorithm for OELE, an 8-competitive algorithm for OELD, and a lower bound for LPW. We also present an optimal offline algorithm for OELE and LPW, and show it is a 2-approximation solution for OELD.
Date Created
2015
Agent

Continuous spatio temporal tracking of mobile targets

153279-Thumbnail Image.png
Description
There has been extensive study of the target tracking problems in the recent years. Very little work has been done in the problem of continuous monitoring of all the mobile targets using the fewest number of mobile trackers, when the

There has been extensive study of the target tracking problems in the recent years. Very little work has been done in the problem of continuous monitoring of all the mobile targets using the fewest number of mobile trackers, when the trajectories of all the targets are known in advance. Almost all the existing research discretized time (and/or space), or assume infinite tracker velocity. In this thesis, I consider the problem of covering (tracking) target nodes using a network of Unmanned Airborne Vehicles (UAV's) for the entire period of observation by adding the constraint of fixed velocity on the trackers and observing the targets in continuous time and space. I also show that the problem is NP-complete and provide algorithms for handling cases when targets are static and dynamic.
Date Created
2014
Agent

Establishing the software-defined networking based defensive system in clouds

153029-Thumbnail Image.png
Description
Cloud computing is regarded as one of the most revolutionary technologies in the past decades. It provides scalable, flexible and secure resource provisioning services, which is also the reason why users prefer to migrate their locally processing workloads onto

Cloud computing is regarded as one of the most revolutionary technologies in the past decades. It provides scalable, flexible and secure resource provisioning services, which is also the reason why users prefer to migrate their locally processing workloads onto remote clouds. Besides commercial cloud system (i.e., Amazon EC2), ProtoGENI and PlanetLab have further improved the current Internet-based resource provisioning system by allowing end users to construct a virtual networking environment. By archiving the similar goal but with more flexible and efficient performance, I present the design and implementation of MobiCloud that is a geo-distributed mobile cloud computing platform, and G-PLaNE that focuses on how to construct the virtual networking environment upon the self-designed resource provisioning system consisting of multiple geo-distributed clusters. Furthermore, I conduct a comprehensive study to layout existing Mobile Cloud Computing (MCC) service models and corresponding representative related work. A new user-centric mobile cloud computing service model is proposed to advance the existing mobile cloud computing research.

After building the MobiCloud, G-PLaNE and studying the MCC model, I have been using Software Defined Networking (SDN) approaches to enhance the system security in the cloud virtual networking environment. I present an OpenFlow based IPS solution called SDNIPS that includes a new IPS architecture based on Open vSwitch (OVS) in the cloud software-based networking environment. It is enabled with elasticity service provisioning and Network Reconfiguration (NR) features based on POX controller. Finally, SDNIPS demonstrates the feasibility and shows more efficiency than traditional approaches through a thorough evaluation.

At last, I propose an OpenFlow-based defensive module composition framework called CloudArmour that is able to perform query, aggregation, analysis, and control function over distributed OpenFlow-enabled devices. I propose several modules and use the DDoS attack as an example to illustrate how to composite the comprehensive defensive solution based on CloudArmour framework. I introduce total 20 Python-based CloudArmour APIs. Finally, evaluation results prove the feasibility and efficiency of CloudArmour framework.
Date Created
2014
Agent

Resource allocation in communication and social networks

152500-Thumbnail Image.png
Description
As networks are playing an increasingly prominent role in different aspects of our lives, there is a growing awareness that improving their performance is of significant importance. In order to enhance performance of networks, it is essential that scarce networking

As networks are playing an increasingly prominent role in different aspects of our lives, there is a growing awareness that improving their performance is of significant importance. In order to enhance performance of networks, it is essential that scarce networking resources be allocated smartly to match the continuously changing network environment. This dissertation focuses on two different kinds of networks - communication and social, and studies resource allocation problems in these networks. The study on communication networks is further divided into different networking technologies - wired and wireless, optical and mobile, airborne and terrestrial. Since nodes in an airborne network (AN) are heterogeneous and mobile, the design of a reliable and robust AN is highly complex. The dissertation studies connectivity and fault-tolerance issues in ANs and proposes algorithms to compute the critical transmission range in fault free, faulty and delay tolerant scenarios. Just as in the case of ANs, power optimization and fault tolerance are important issues in wireless sensor networks (WSN). In a WSN, a tree structure is often used to deliver sensor data to a sink node. In a tree, failure of a node may disconnect the tree. The dissertation investigates the problem of enhancing the fault tolerance capability of data gathering trees in WSN. The advent of OFDM technology provides an opportunity for efficient resource utilization in optical networks and also introduces a set of novel problems, such as routing and spectrum allocation (RSA) problem. This dissertation proves that RSA problem is NP-complete even when the network topology is a chain, and proposes approximation algorithms. In the domain of social networks, the focus of this dissertation is study of influence propagation in presence of active adversaries. In a social network multiple vendors may attempt to influence the nodes in a competitive fashion. This dissertation investigates the scenario where the first vendor has already chosen a set of nodes and the second vendor, with the knowledge of the choice of the first, attempts to identify a smallest set of nodes so that after the influence propagation, the second vendor's market share is larger than the first.
Date Created
2014
Agent