Crossroads --- A Time-Sensitive Autonomous Intersection Management Technique

155312-Thumbnail Image.png
Description
For autonomous vehicles, intelligent autonomous intersection management will be required for safe and efficient operation. In order to achieve safe operation despite uncertainties in vehicle trajectory, intersection management techniques must consider a safety buffer around the vehicles. For truly safe

For autonomous vehicles, intelligent autonomous intersection management will be required for safe and efficient operation. In order to achieve safe operation despite uncertainties in vehicle trajectory, intersection management techniques must consider a safety buffer around the vehicles. For truly safe operation, an extra buffer space should be added to account for the network and computational delay caused by communication with the Intersection Manager (IM). However, modeling the worst-case computation and network delay as additional buffer around the vehicle degrades the throughput of the intersection. To avoid this problem, AIM, a popular state-of-the-art IM, adopts a query-based approach in which the vehicle requests to enter at a certain arrival time dictated by its current velocity and distance to the intersection, and the IM replies yes
o. Although this solution does not degrade the position uncertainty, it ultimately results in poor intersection throughput. We present Crossroads, a time-sensitive programming method to program the interface of a vehicle and the IM. Without requiring additional buffer to account for the effect of network and computational delay, Crossroads enables efficient intersection management. Test results on a 1/10 scale model of intersection using TRAXXAS RC cars demonstrates that our Crossroads approach obviates the need for large buffers to accommodate for the network and computation delay, and can reduce the average wait time for the vehicles at a single-lane intersection by 24%. To compare Crossroads with previous approaches, we perform extensive Matlab simulations, and find that Crossroads achieves on average 1.62X higher throughput than a simple VT-IM with extra safety buffer, and 1.36X better than AIM.
Date Created
2017
Agent

WCET-aware scratchpad memory management for hard real-time systems

155240-Thumbnail Image.png
Description
Cyber-physical systems and hard real-time systems have strict timing constraints that specify deadlines until which tasks must finish their execution. Missing a deadline can cause unexpected outcome or endanger human lives in safety-critical applications, such as automotive or aeronautical systems.

Cyber-physical systems and hard real-time systems have strict timing constraints that specify deadlines until which tasks must finish their execution. Missing a deadline can cause unexpected outcome or endanger human lives in safety-critical applications, such as automotive or aeronautical systems. It is, therefore, of utmost importance to obtain and optimize a safe upper bound of each task’s execution time or the worst-case execution time (WCET), to guarantee the absence of any missed deadline. Unfortunately, conventional microarchitectural components, such as caches and branch predictors, are only optimized for average-case performance and often make WCET analysis complicated and pessimistic. Caches especially have a large impact on the worst-case performance due to expensive off- chip memory accesses involved in cache miss handling. In this regard, software-controlled scratchpad memories (SPMs) have become a promising alternative to caches. An SPM is a raw SRAM, controlled only by executing data movement instructions explicitly at runtime, and such explicit control facilitates static analyses to obtain safe and tight upper bounds of WCETs. SPM management techniques, used in compilers targeting an SPM-based processor, determine how to use a given SPM space by deciding where to insert data movement instructions and what operations to perform at those program locations. This dissertation presents several management techniques for program code and stack data, which aim to optimize the WCETs of a given program. The proposed code management techniques include optimal allocation algorithms and a polynomial-time heuristic for allocating functions to the SPM space, with or without the use of abstraction of SPM regions, and a heuristic for splitting functions into smaller partitions. The proposed stack data management technique, on the other hand, finds an optimal set of program locations to evict and restore stack frames to avoid stack overflows, when the call stack resides in a size-limited SPM. In the evaluation, the WCETs of various benchmarks including real-world automotive applications are statically calculated for SPMs and caches in several different memory configurations.
Date Created
2017
Agent

Methods for calibration, registration, and change detection in robot mapping applications

155083-Thumbnail Image.png
Description
Multi-sensor fusion is a fundamental problem in Robot Perception. For a robot to operate in a real world environment, multiple sensors are often needed. Thus, fusing data from various sensors accurately is vital for robot perception. In the first part

Multi-sensor fusion is a fundamental problem in Robot Perception. For a robot to operate in a real world environment, multiple sensors are often needed. Thus, fusing data from various sensors accurately is vital for robot perception. In the first part of this thesis, the problem of fusing information from a LIDAR, a color camera and a thermal camera to build RGB-Depth-Thermal (RGBDT) maps is investigated. An algorithm that solves a non-linear optimization problem to compute the relative pose between the cameras and the LIDAR is presented. The relative pose estimate is then used to find the color and thermal texture of each LIDAR point. Next, the various sources of error that can cause the mis-coloring of a LIDAR point after the cross- calibration are identified. Theoretical analyses of these errors reveal that the coloring errors due to noisy LIDAR points, errors in the estimation of the camera matrix, and errors in the estimation of translation between the sensors disappear with distance. But errors in the estimation of the rotation between the sensors causes the coloring error to increase with distance.

On a robot (vehicle) with multiple sensors, sensor fusion algorithms allow us to represent the data in the vehicle frame. But data acquired temporally in the vehicle frame needs to be registered in a global frame to obtain a map of the environment. Mapping techniques involving the Iterative Closest Point (ICP) algorithm and the Normal Distributions Transform (NDT) assume that a good initial estimate of the transformation between the 3D scans is available. This restricts the ability to stitch maps that were acquired at different times. Mapping can become flexible if maps that were acquired temporally can be merged later. To this end, the second part of this thesis focuses on developing an automated algorithm that fuses two maps by finding a congruent set of five points forming a pyramid.

Mapping has various application domains beyond Robot Navigation. The third part of this thesis considers a unique application domain where the surface displace- ments caused by an earthquake are to be recovered using pre- and post-earthquake LIDAR data. A technique to recover the 3D surface displacements is developed and the results are presented on real earthquake datasets: El Mayur Cucupa earthquake, Mexico, 2010 and Fukushima earthquake, Japan, 2011.
Date Created
2016
Agent

Modeling, analysis, and efficient resource allocation in cyber-physical systems and critical infrastructure networks

155052-Thumbnail Image.png
Description
The critical infrastructures of the nation are a large and complex network of human, physical and cyber-physical systems. In recent times, it has become increasingly apparent that individual critical infrastructures, such as the power and communication networks, do not operate

The critical infrastructures of the nation are a large and complex network of human, physical and cyber-physical systems. In recent times, it has become increasingly apparent that individual critical infrastructures, such as the power and communication networks, do not operate in isolation, but instead are part of a complex interdependent ecosystem where a failure involving a small set of network entities can trigger a cascading event resulting in the failure of a much larger set of entities through the failure propagation process.

Recognizing the need for a deeper understanding of the interdependent relationships between such critical infrastructures, several models have been proposed and analyzed in the last few years. However, most of these models are over-simplified and fail to capture the complex interdependencies that may exist between critical infrastructures. To overcome the limitations of existing models, this dissertation presents a new model -- the Implicative Interdependency Model (IIM) that is able to capture such complex interdependency relations. As the potential for a failure cascade in critical interdependent networks poses several risks that can jeopardize the nation, this dissertation explores relevant research problems in the interdependent power and communication networks using the proposed IIM and lays the foundations for further study using this model.

Apart from exploring problems in interdependent critical infrastructures, this dissertation also explores resource allocation techniques for environments enabled with cyber-physical systems. Specifically, the problem of efficient path planning for data collection using mobile cyber-physical systems is explored. Two such environments are considered: a Radio-Frequency IDentification (RFID) environment with mobile “Tags” and “Readers”, and a sensor data collection environment where both the sensors and the data mules (data collectors) are mobile.

Finally, from an applied research perspective, this dissertation presents Raptor, an advanced network planning and management tool for mitigating the impact of spatially correlated, or region based faults on infrastructure networks. Raptor consolidates a wide range of studies conducted in the last few years on region based faults, and provides an interface for network planners, designers and operators to use the results of these studies for designing robust and resilient networks in the presence of spatially correlated faults.
Date Created
2016
Agent

Traffic light status detection using movement patterns of vehicles

154964-Thumbnail Image.png
Description
Traditional methods for detecting the status of traffic lights used in autonomous vehicles may be susceptible to errors, which is troublesome in a safety-critical environment. In the case of vision-based recognition methods, failures may arise due to disturbances in the

Traditional methods for detecting the status of traffic lights used in autonomous vehicles may be susceptible to errors, which is troublesome in a safety-critical environment. In the case of vision-based recognition methods, failures may arise due to disturbances in the environment such as occluded views or poor lighting conditions. Some methods also depend on high-precision meta-data which is not always available. This thesis proposes a complementary detection approach based on an entirely new source of information: the movement patterns of other nearby vehicles. This approach is robust to traditional sources of error, and may serve as a viable supplemental detection method. Several different classification models are presented for inferring traffic light status based on these patterns. Their performance is evaluated over real-world and simulation data sets, resulting in up to 97% accuracy in each set.
Date Created
2016
Agent

Haptic perception, decision-making, and learning for manipulation with artificial hands

154883-Thumbnail Image.png
Description
Robotic systems are outmatched by the abilities of the human hand to perceive and manipulate the world. Human hands are able to physically interact with the world to perceive, learn, and act to accomplish tasks. Limitations of robotic systems to

Robotic systems are outmatched by the abilities of the human hand to perceive and manipulate the world. Human hands are able to physically interact with the world to perceive, learn, and act to accomplish tasks. Limitations of robotic systems to interact with and manipulate the world diminish their usefulness. In order to advance robot end effectors, specifically artificial hands, rich multimodal tactile sensing is needed. In this work, a multi-articulating, anthropomorphic robot testbed was developed for investigating tactile sensory stimuli during finger-object interactions. The artificial finger is controlled by a tendon-driven remote actuation system that allows for modular control of any tendon-driven end effector and capabilities for both speed and strength. The artificial proprioception system enables direct measurement of joint angles and tendon tensions while temperature, vibration, and skin deformation are provided by a multimodal tactile sensor. Next, attention was focused on real-time artificial perception for decision-making. A robotic system needs to perceive its environment in order to make decisions. Specific actions such as “exploratory procedures” can be employed to classify and characterize object features. Prior work on offline perception was extended to develop an anytime predictive model that returns the probability of having touched a specific feature of an object based on minimally processed sensor data. Developing models for anytime classification of features facilitates real-time action-perception loops. Finally, by combining real-time action-perception with reinforcement learning, a policy was learned to complete a functional contour-following task: closing a deformable ziplock bag. The approach relies only on proprioceptive and localized tactile data. A Contextual Multi-Armed Bandit (C-MAB) reinforcement learning algorithm was implemented to maximize cumulative rewards within a finite time period by balancing exploration versus exploitation of the action space. Performance of the C-MAB learner was compared to a benchmark Q-learner that eventually returns the optimal policy. To assess robustness and generalizability, the learned policy was tested on variations of the original contour-following task. The work presented contributes to the full range of tools necessary to advance the abilities of artificial hands with respect to dexterity, perception, decision-making, and learning.
Date Created
2016
Agent

Extended LTLvis motion planning interface

154868-Thumbnail Image.png
Description
Robots are becoming an important part of our life and industry. Although a lot of robot control interfaces have been developed to simplify the control method and improve user experience, users still cannot control robots comfortably. With the improvements of

Robots are becoming an important part of our life and industry. Although a lot of robot control interfaces have been developed to simplify the control method and improve user experience, users still cannot control robots comfortably. With the improvements of the robot functions, the requirements of universality and ease of use of robot control interfaces are also increasing. This research introduces a graphical interface for Linear Temporal Logic (LTL) specifications for mobile robots. It is a sketch based interface built on the Android platform which makes the LTL control interface more friendly to non-expert users. By predefining a set of areas of interest, this interface can quickly and efficiently create plans that satisfy extended plan goals in LTL. The interface can also allow users to customize the paths for this plan by sketching a set of reference trajectories. Given the custom paths by the user, the LTL specification and the environment, the interface generates a plan balancing the customized paths and the LTL specifications. We also show experimental results with the implemented interface.
Date Created
2016
Agent

Instrumentation and coverage analysis of cyber physical system models

154867-Thumbnail Image.png
Description
A Cyber Physical System consists of a computer monitoring and controlling physical processes usually in a feedback loop. These systems are increasingly becoming part of our daily life ranging from smart buildings to medical devices to automobiles. The controller comprises

A Cyber Physical System consists of a computer monitoring and controlling physical processes usually in a feedback loop. These systems are increasingly becoming part of our daily life ranging from smart buildings to medical devices to automobiles. The controller comprises discrete software which may be operating in one of the many possible operating modes and interacting with a changing physical environment in a feedback loop. The systems with such a mix of discrete and continuous dynamics are usually termed as hybrid systems. In general, these systems are safety critical, hence their correct operation must be verified. Model Based Design (MBD) languages like Simulink are being used extensively for the design and analysis of hybrid systems due to the ease in system design and automatic code generation. It also allows testing and verification of these systems before deployment. One of the main challenges in the verification of these systems is to test all the operating modes of the control software and reduce the amount of user intervention.

This research aims to provide an automated framework for the structural analysis and instrumentation of hybrid system models developed in Simulink. The behavior of the components introducing discontinuities in the model are automatically extracted in the form of state transition graphs. The framework is integrated in the S-TaLiRo toolbox to demonstrate the improvement in mode coverage.
Date Created
2016
Agent

Improving AI planning by using extensible components

154694-Thumbnail Image.png
Description
Despite incremental improvements over decades, academic planning solutions see relatively little use in many industrial domains despite the relevance of planning paradigms to those problems. This work observes four shortfalls of existing academic solutions which contribute to this lack of

Despite incremental improvements over decades, academic planning solutions see relatively little use in many industrial domains despite the relevance of planning paradigms to those problems. This work observes four shortfalls of existing academic solutions which contribute to this lack of adoption.

To address these shortfalls this work defines model-independent semantics for planning and introduces an extensible planning library. This library is shown to produce feasible results on an existing benchmark domain, overcome the usual modeling limitations of traditional planners, and accommodate domain-dependent knowledge about the problem structure within the planning process.
Date Created
2016
Agent

Answer set programming modulo theories

154648-Thumbnail Image.png
Description
Knowledge representation and reasoning is a prominent subject of study within the field of artificial intelligence that is concerned with the symbolic representation of knowledge in such a way to facilitate automated reasoning about this knowledge. Often in real-world domains,

Knowledge representation and reasoning is a prominent subject of study within the field of artificial intelligence that is concerned with the symbolic representation of knowledge in such a way to facilitate automated reasoning about this knowledge. Often in real-world domains, it is necessary to perform defeasible reasoning when representing default behaviors of systems. Answer Set Programming is a widely-used knowledge representation framework that is well-suited for such reasoning tasks and has been successfully applied to practical domains due to efficient computation through grounding--a process that replaces variables with variable-free terms--and propositional solvers similar to SAT solvers. However, some domains provide a challenge for grounding-based methods such as domains requiring reasoning about continuous time or resources.

To address these domains, there have been several proposals to achieve efficiency through loose integrations with efficient declarative solvers such as constraint solvers or satisfiability modulo theories solvers. While these approaches successfully avoid substantial grounding, due to the loose integration, they are not suitable for performing defeasible reasoning on functions. As a result, this expressive reasoning on functions must either be performed using predicates to simulate the functions or in a way that is not elaboration tolerant. Neither compromise is reasonable; the former suffers from the grounding bottleneck when domains are large as is often the case in real-world domains while the latter necessitates encodings to be non-trivially modified for elaborations.

This dissertation presents a novel framework called Answer Set Programming Modulo Theories (ASPMT) that is a tight integration of the stable model semantics and satisfiability modulo theories. This framework both supports defeasible reasoning about functions and alleviates the grounding bottleneck. Combining the strengths of Answer Set Programming and satisfiability modulo theories enables efficient continuous reasoning while still supporting rich reasoning features such as reasoning about defaults and reasoning in domains with incomplete knowledge. This framework is realized in two prototype implementations called MVSM and ASPMT2SMT, and the latter was recently incorporated into a non-monotonic spatial reasoning system. To define the semantics of this framework, we extend the first-order stable model semantics by Ferraris, Lee and Lifschitz to allow "intensional functions" and provide analyses of the theoretical properties of this new formalism and on the relationships between this and existing approaches.
Date Created
2016
Agent