Analysis of Santa Monica Water Usage Data for Water Conservation

132759-Thumbnail Image.png
Description
Historically, per capita water demand has tended to increase proportionately with population growth. However, the last two decades have exhibited a different trend; per capita water usage is declining despite a growing economy and population. Subsequently, city planners and water

Historically, per capita water demand has tended to increase proportionately with population growth. However, the last two decades have exhibited a different trend; per capita water usage is declining despite a growing economy and population. Subsequently, city planners and water suppliers have been struggling to understand this new trend and whether it will continue over the coming years. This leads to inefficient water management practices as well as flawed water storage design, both of which have adverse impacts on the economy and environment. Water usage data, provided by the city of Santa Monica, was analyzed using a combination of hydro-climatic and demographic variables to dissect these trends and variation in usage. The data proved to be tremendously difficult to work with; several values were missing or erroneously reported, and additional variables had to be brought from external sources to help explain the variation. Upon completion of the data processing, several statistical techniques including regression and clustering models were built to identify potential correlations and understand the consumers’ behavior. The regression models highlighted temperature and precipitation as significant stimuli of water usage, while the cluster models emphasized high volume consumers and their respective demographic traits. However, the overall model accuracy and fit was very poor for the models due to the inadequate quality of data collection and management. The imprecise measurement process for recording water usage along with varying levels of granularity across the different variables prevented the models from revealing meaningful associations. Moving forward, smart meter technology needs to be considered as it accurately captures real-time water usage and transmits the information to data hubs which then implement predictive analytics to provide updated trends. This efficient system will allow cities across the nation to stay abreast of future water usage developments and conserve time, resources, and the environment.
Date Created
2019-05
Agent

Concepts and Practices for Transforming Infrastructure from Rigid to Adaptable

156828-Thumbnail Image.png
Description
Infrastructure are increasingly being recognized as too rigid to quickly adapt to a changing climate and a non-stationary future. This rigidness poses risks to and impacts on infrastructure service delivery and public welfare. Adaptivity in infrastructure is critical for managing

Infrastructure are increasingly being recognized as too rigid to quickly adapt to a changing climate and a non-stationary future. This rigidness poses risks to and impacts on infrastructure service delivery and public welfare. Adaptivity in infrastructure is critical for managing uncertainties to continue providing services, yet little is known about how infrastructure can be made more agile and flexible towards improved adaptive capacity. A literature review identified approximately fifty examples of novel infrastructure and technologies which support adaptivity through one or more of ten theoretical competencies of adaptive infrastructure. From these examples emerged several infrastructure forms and possible strategies for adaptivity, including smart technologies, combined centralized/decentralized organizational structures, and renewable electricity generation. With institutional and cultural support, such novel structures and systems have the potential to transform infrastructure provision and management.
Date Created
2018
Agent

Effect of Drought Policies on Los Angeles Water Demand

133177-Thumbnail Image.png
Description
From 2007 to 2017, the state of California experienced two major droughts that required significant governmental action to decrease urban water demand. The purpose of this project is to isolate and explore the effects of these policy changes on water

From 2007 to 2017, the state of California experienced two major droughts that required significant governmental action to decrease urban water demand. The purpose of this project is to isolate and explore the effects of these policy changes on water use during and after these droughts, and to see how these policies interact with hydroclimatic variability. As explanatory variables in multiple linear regression (MLR) models, water use policies were found to be significant at both the zip code and city levels. Policies that specifically target behavioral changes were significant mathematical drivers of water use in city-level models. Policy data was aggregated into a timeline and coded based on categories including user type, whether the policy was voluntary or mandatory, the targeted water use type, and whether the change in question concerns active or passive conservation. The analyzed policies include but are not limited to state drought declarations, regulatory municipal ordinances, and incentive programs for household appliances. Spatial averages of available hydroclimatic data have been computed and validated using inverse distance weighting methods. The data was aggregated at the zip code level to be comparable to the available water use data for use in MLR models. Factors already known to affect water use, such as temperature, precipitation, income, and water stress, were brought into the MLR models as explanatory variables. After controlling for these factors, the timeline policies were brought into the model as coded variables to test their effect on water demand during the years 2000-2017. Clearly identifying which policy traits are effective will inform future policymaking in cities aiming to conserve water. The findings suggest that drought-related policies impact per capita urban water use. The results of the city level MLR models indicate that implementation of mandatory policies that target water use behaviors effectively reduce water use. Temperature, income, unemployment, and the WaSSI were also observed to be mathematical drivers of water use. Interaction effects between policies and the WaSSI were statistically significant at both model scales.
Date Created
2018-12

The EcoCode: Redesigning the Urban Block

134036-Thumbnail Image.png
Description
Midwestern cities are in decline, with shrinking populations and corresponding disinvestment. Many organizations and city governments are working on addressing the problem of vacancy while bringing these urban areas into the global economy. The EcoBlock Organization (EBO), a St. Louis-based

Midwestern cities are in decline, with shrinking populations and corresponding disinvestment. Many organizations and city governments are working on addressing the problem of vacancy while bringing these urban areas into the global economy. The EcoBlock Organization (EBO), a St. Louis-based non-profit, proposes block-level redevelopment as a method of fostering community and economic development while minimizing the impact on the environment. The EcoCode is a block-level form-based code describing the vision of the EBO and its implementation. This vision is centered around eight key design principles: energy, public health, social, urban design, water, transportation, resilience, and landscape. It manifests as an EcoBlock: a block of buildings surrounding a shared green space, connected by an energy grid and a shared geothermal loop with the goal of net-zero energy. The residences are a mix of building types for a variety of incomes and some building space will be designated for shared use, all physically reflecting the historic design of houses in the city in which the EcoBlock is implemented. Specifications like design, building placement, and mechanisms by which to strive towards net-zero energy and water will be determined in each location in which the EcoBlock is developed. The EcoCode describes the process and the desired outcome, providing a framework for this implementation.
The EcoCode resembles a typical form-based code in structure, but at a smaller geographic scale. General Provisions describes the context of the surrounding area that must be assessed before choosing to create an EcoBlock. Development and Adoption strategy explains the evolving role of the EBO and how the realization of this design is currently envisioned. Regulating Block, Block Development Standards, Building Envelope Standards, and Building Development Standards describe the detail that will need to be developed for the physical aspects of each block. Streetscape Standards describe the vision of the EBO as applicable to the streets surrounding an EcoBlock. Finally, the Sustainability Standards contain the contribution of each board member of the EBO with their unique expertise on implementing the design principles.
As a supplement to The EcoCode itself, this document contains three topics for case studies looking into the feasibility of the EcoBlock as a whole: shared space, net-zero energy, and mixed-income housing. Shared space development and management uses Montgomery Park in Boston to show the potential of community-based organization while warning against gentrification. The West Village campus of the University of California in Davis shows the technical possibility and the financial challenges of a net-zero community. Brogården, an affordable housing community in Sweden, demonstrates the possibility for decreasing energy consumption in public housing. Finally, Via Verde in New York City is an example of combining health, green space, and affordability in a mixed-income housing development. Though there is not yet an example of a fully implemented EcoBlock, these case studies speak to the challenges and the facilitators that the EBO will likely face.
Date Created
2018-05
Agent