Modeling and H-Infinity Loop Shaping Control of a Vertical Takeoff and Landing Drone

156318-Thumbnail Image.png
Description
VTOL drones were designed and built at the beginning of the 20th century for military applications due to easy take-off and landing operations. Many companies like Lockheed, Convair, NASA and Bell Labs built their own aircrafts but only a few

VTOL drones were designed and built at the beginning of the 20th century for military applications due to easy take-off and landing operations. Many companies like Lockheed, Convair, NASA and Bell Labs built their own aircrafts but only a few from them came in to the market. Usually, flight automation starts from first principles modeling which helps in the controller design and dynamic analysis of the system.

In this project, a VTOL drone with a shape similar to a Convair XFY-1 is studied and the primary focus is stabilizing and controlling the flight path of the drone in
its hover and horizontal flying modes. The model of the plane is obtained using first principles modeling and controllers are designed to stabilize the yaw, pitch and roll rotational motions.

The plane is modeled for its yaw, pitch and roll rotational motions. Subsequently, the rotational dynamics of the system are linearized about the hover flying mode, hover to horizontal flying mode, horizontal flying mode, horizontal to hover flying mode for ease of implementation of linear control design techniques. The controllers are designed based on an H∞ loop shaping procedure and the results are verified on the actual nonlinear model for the stability of the closed loop system about hover flying, hover to horizontal transition flying, horizontal flying, horizontal to hover transition flying. An experiment is conducted to study the dynamics of the motor by recording the PWM input to the electronic speed controller as input and the rotational speed of the motor as output. A theoretical study is also done to study the thrust generated by the propellers for lift, slipstream velocity analysis, torques acting on the system for various thrust profiles.
Date Created
2018
Agent

Image Processing for an Autonomous Throwing Arm and Smart Catching System

133580-Thumbnail Image.png
Description
In this paper, we propose an autonomous throwing and catching system to be developed as a preliminary step towards the refinement of a robotic arm capable of improving strength and motor function in the limb. This will be accomplished by

In this paper, we propose an autonomous throwing and catching system to be developed as a preliminary step towards the refinement of a robotic arm capable of improving strength and motor function in the limb. This will be accomplished by first autonomizing simpler movements, such as throwing a ball. In this system, an autonomous thrower will detect a desired target through the use of image processing. The launch angle and direction necessary to hit the target will then be calculated, followed by the launching of the ball. The smart catcher will then detect the ball as it is in the air, calculate its expected landing location based on its initial trajectory, and adjust its position so that the ball lands in the center of the target. The thrower will then proceed to compare the actual landing position with the position where it expected the ball to land, and adjust its calculations accordingly for the next throw. By utilizing this method of feedback, the throwing arm will be able to automatically correct itself. This means that the thrower will ideally be able to hit the target exactly in the center within a few throws, regardless of any additional uncertainty in the system. This project will focus of the controller and image processing components necessary for the autonomous throwing arm to be able to detect the position of the target at which it will be aiming, and for the smart catcher to be able to detect the position of the projectile and estimate its final landing position by tracking its current trajectory.
Date Created
2018-05
Agent

Fractional Order PID Controller Tuning by Frequency Loop-Shaping: Analysis and Applications

155932-Thumbnail Image.png
Description
The purpose of this dissertation is to develop a design technique for fractional PID controllers to achieve a closed loop sensitivity bandwidth approximately equal to a desired bandwidth using frequency loop shaping techniques. This dissertation analyzes the effect of the

The purpose of this dissertation is to develop a design technique for fractional PID controllers to achieve a closed loop sensitivity bandwidth approximately equal to a desired bandwidth using frequency loop shaping techniques. This dissertation analyzes the effect of the order of a fractional integrator which is used as a target on loop shaping, on stability and performance robustness. A comparison between classical PID controllers and fractional PID controllers is presented. Case studies where fractional PID controllers have an advantage over classical PID controllers are discussed. A frequency-domain loop shaping algorithm is developed, extending past results from classical PID’s that have been successful in tuning controllers for a variety of practical systems.
Date Created
2017
Agent

Low-cost Image-assisted Inertial Navigation System for a Micro Air Vehicle

136716-Thumbnail Image.png
Description
The increasing civilian demand for autonomous aerial vehicle platforms in both hobby and professional markets has resulted in an abundance of inexpensive inertial navigation systems and hardware. Many of these systems lack full autonomy, relying on the pilot's guidance with

The increasing civilian demand for autonomous aerial vehicle platforms in both hobby and professional markets has resulted in an abundance of inexpensive inertial navigation systems and hardware. Many of these systems lack full autonomy, relying on the pilot's guidance with the assistance of inertial sensors for guidance. Autonomous systems depend heavily on the use of a global positioning satellite receiver which can be inhibited by satellite signal strength, low update rates and poor positioning accuracy. For precise navigation of a micro air vehicle in locations where GPS signals are unobtainable, such as indoors or throughout a dense urban environment, additional sensors must complement the inertial sensors to provide improved navigation state estimations without the use of a GPS. By creating a system that allows for the rapid development of experimental guidance, navigation and control algorithms on versatile, low-cost development platforms, improved navigation systems may be tested with relative ease and at reduced cost. Incorporating a downward-facing camera with this system may also be utilized to further improve vehicle autonomy in denied-GPS environments.
Date Created
2014-12
Agent

Detection, prediction and control of epileptic seizures

155064-Thumbnail Image.png
Description
From time immemorial, epilepsy has persisted to be one of the greatest impediments to human life for those stricken by it. As the fourth most common neurological disorder, epilepsy causes paroxysmal electrical discharges in the brain that manifest as seizures.

From time immemorial, epilepsy has persisted to be one of the greatest impediments to human life for those stricken by it. As the fourth most common neurological disorder, epilepsy causes paroxysmal electrical discharges in the brain that manifest as seizures. Seizures have the effect of debilitating patients on a physical and psychological level. Although not lethal by themselves, they can bring about total disruption in consciousness which can, in hazardous conditions, lead to fatality. Roughly 1\% of the world population suffer from epilepsy and another 30 to 50 new cases per 100,000 increase the number of affected annually. Controlling seizures in epileptic patients has therefore become a great medical and, in recent years, engineering challenge.



In this study, the conditions of human seizures are recreated in an animal model of temporal lobe epilepsy. The rodents used in this study are chemically induced to become chronically epileptic. Their Electroencephalogram (EEG) data is then recorded and analyzed to detect and predict seizures; with the ultimate goal being the control and complete suppression of seizures.



Two methods, the maximum Lyapunov exponent and the Generalized Partial Directed Coherence (GPDC), are applied on EEG data to extract meaningful information. Their effectiveness have been reported in the literature for the purpose of prediction of seizures and seizure focus localization. This study integrates these measures, through some modifications, to robustly detect seizures and separately find precursors to them and in consequence provide stimulation to the epileptic brain of rats in order to suppress seizures. Additionally open-loop stimulation with biphasic currents of various pairs of sites in differing lengths of time have helped us create control efficacy maps. While GPDC tells us about the possible location of the focus, control efficacy maps tells us how effective stimulating a certain pair of sites will be.



The results from computations performed on the data are presented and the feasibility of the control problem is discussed. The results show a new reliable means of seizure detection even in the presence of artifacts in the data. The seizure precursors provide a means of prediction, in the order of tens of minutes, prior to seizures. Closed loop stimulation experiments based on these precursors and control efficacy maps on the epileptic animals show a maximum reduction of seizure frequency by 24.26\% in one animal and reduction of length of seizures by 51.77\% in another. Thus, through this study it was shown that the implementation of the methods can ameliorate seizures in an epileptic patient. It is expected that the new knowledge and experimental techniques will provide a guide for future research in an effort to ultimately eliminate seizures in epileptic patients.
Date Created
2016
Agent

PID controller tuning and adaptation of a buck converter

154835-Thumbnail Image.png
Description
Buck converters are electronic devices that changes a voltage from one level to a lower one and are present in many everyday applications. However, due to factors like aging, degradation or failures, these devices require a system identification process to

Buck converters are electronic devices that changes a voltage from one level to a lower one and are present in many everyday applications. However, due to factors like aging, degradation or failures, these devices require a system identification process to track and diagnose their parameters. The system identification process should be performed on-line to not affect the normal operation of the device. Identifying the parameters of the system is essential to design and tune an adaptive proportional-integral-derivative (PID) controller.

Three techniques were used to design the PID controller. Phase and gain margin still prevails as one of the easiest methods to design controllers. Pole-zero cancellation is another technique which is based on pole-placement. However, although these controllers can be easily designed, they did not provide the best response compared to the Frequency Loop Shaping (FLS) technique. Therefore, since FLS showed to have a better frequency and time responses compared to the other two controllers, it was selected to perform the adaptation of the system.

An on-line system identification process was performed for the buck converter using indirect adaptation and the least square algorithm. The estimation error and the parameter error were computed to determine the rate of convergence of the system. The indirect adaptation required about 2000 points to converge to the true parameters prior designing the controller. These results were compared to the adaptation executed using robust stability condition (RSC) and a switching controller. Two different scenarios were studied consisting of five plants that defined the percentage of deterioration of the capacitor and inductor within the buck converter. The switching logic did not always select the optimal controller for the first scenario because the frequency response of the different plants was not significantly different. However, the second scenario consisted of plants with more noticeable different frequency responses and the switching logic selected the optimal controller all the time in about 500 points. Additionally, a disturbance was introduced at the plant input to observe its effect in the switching controller. However, for reasonable low disturbances no change was detected in the proper selection of controllers.
Date Created
2016
Agent

System identification using discontinuous data sets and PID loop-shaping control of a vertical take-off and landing drone

154053-Thumbnail Image.png
Description
Vertical taking off and landing (VTOL) drones started to emerge at the beginning of this century, and finds applications in the vast areas of mapping, rescuing, logistics, etc. Usually a VTOL drone control system design starts from a first principles

Vertical taking off and landing (VTOL) drones started to emerge at the beginning of this century, and finds applications in the vast areas of mapping, rescuing, logistics, etc. Usually a VTOL drone control system design starts from a first principles model. Most of the VTOL drones are in the shape of a quad-rotor which is convenient for dynamic analysis.

In this project, a VTOL drone with shape similar to a Convair XFY-1 is studied and the primary focus is developing and examining an alternative method to identify a system model from the input and output data, with which it is possible to estimate system parameters and compute model uncertainties on discontinuous data sets. We verify the models by designing controllers that stabilize the yaw, pitch, and roll angles for the VTOL drone in the hovering state.

This project comprises of three stages: an open-loop identification to identify the yaw and pitch dynamics, an intermediate closed-loop identification to identify the roll action dynamic and a closed-loop identification to refine the identification of yaw and pitch action. In open and closed loop identifications, the reference signals sent to the servos were recorded as inputs to the system and the angles and angular velocities in yaw and pitch directions read by inertial measurement unit were recorded as outputs of the system. In the intermediate closed loop identification, the difference between the reference signals sent to the motors on the contra-rotators was recorded as input and the roll angular velocity is recorded as output. Next, regressors were formed by using a coprime factor structure and then parameters of the system were estimated using the least square method. Multiplicative and divisive uncertainties were calculated from the data set and were used to guide PID loop-shaping controller design.
Date Created
2015
Agent

Modeling and control of flapping wing micro aerial vehicles

153731-Thumbnail Image.png
Description
Interest in Micro Aerial Vehicle (MAV) research has surged over the past decade. MAVs offer new capabilities for intelligence gathering, reconnaissance, site mapping, communications, search and rescue, etc. This thesis discusses key modeling and control aspects of flapping wing MAVs

Interest in Micro Aerial Vehicle (MAV) research has surged over the past decade. MAVs offer new capabilities for intelligence gathering, reconnaissance, site mapping, communications, search and rescue, etc. This thesis discusses key modeling and control aspects of flapping wing MAVs in hover. A three degree of freedom nonlinear model is used to describe the flapping wing vehicle. Averaging theory is used to obtain a nonlinear average model. The equilibrium of this model is then analyzed. A linear model is then obtained to describe the vehicle near hover. LQR is used to as the main control system design methodology. It is used, together with a nonlinear parameter optimization algorithm, to design a family multivariable control system for the MAV. Critical performance trade-offs are illuminated. Properties at both the plant output and input are examined. Very specific rules of thumb are given for control system design. The conservatism of the rules are also discussed. Issues addressed include

What should the control system bandwidth be vis--vis the flapping frequency (so that averaging the nonlinear system is valid)?

When is first order averaging sufficient? When is higher order averaging necessary?

When can wing mass be neglected and when does wing mass become critical to model?

This includes how and when the rules given can be tightened; i.e. made less conservative.
Date Created
2015
Agent

Concentrated solar power generation

152326-Thumbnail Image.png
Description
Solar power generation is the most promising technology to transfer energy consumption reliance from fossil fuel to renewable sources. Concentrated solar power generation is a method to concentrate the sunlight from a bigger area to a smaller area. The collected

Solar power generation is the most promising technology to transfer energy consumption reliance from fossil fuel to renewable sources. Concentrated solar power generation is a method to concentrate the sunlight from a bigger area to a smaller area. The collected sunlight is converted more efficiently through two types of technologies: concentrated solar photovoltaics (CSPV) and concentrated solar thermal power (CSTP) generation. In this thesis, these two technologies were evaluated in terms of system construction, performance characteristics, design considerations, cost benefit analysis and their field experience. The two concentrated solar power generation systems were implemented with similar solar concentrators and solar tracking systems but with different energy collecting and conversion components: the CSPV system uses high efficiency multi-junction solar cell modules, while the CSTP system uses a boiler -turbine-generator setup. The performances are calibrated via the experiments and evaluation analysis.
Date Created
2013
Agent

A study on constrained state estimators

152273-Thumbnail Image.png
Description
This study focuses on state estimation of nonlinear discrete time systems with constraints. Physical processes have inherent in them, constraints on inputs, outputs, states and disturbances. These constraints can provide additional information to the estimator in estimating states from the

This study focuses on state estimation of nonlinear discrete time systems with constraints. Physical processes have inherent in them, constraints on inputs, outputs, states and disturbances. These constraints can provide additional information to the estimator in estimating states from the measured output. Recursive filters such as Kalman Filters or Extended Kalman Filters are commonly used in state estimation; however, they do not allow inclusion of constraints in their formulation. On the other hand, computational complexity of full information estimation (using all measurements) grows with iteration and becomes intractable. One way of formulating the recursive state estimation problem with constraints is the Moving Horizon Estimation (MHE) approximation. Estimates of states are calculated from the solution of a constrained optimization problem of fixed size. Detailed formulation of this strategy is studied and properties of this estimation algorithm are discussed in this work. The problem with the MHE formulation is solving an optimization problem in each iteration which is computationally intensive. State estimation with constraints can be formulated as Extended Kalman Filter (EKF) with a projection applied to estimates. The states are estimated from the measurements using standard Extended Kalman Filter (EKF) algorithm and the estimated states are projected on to a constrained set. Detailed formulation of this estimation strategy is studied and the properties associated with this algorithm are discussed. Both these state estimation strategies (MHE and EKF with projection) are tested with examples from the literature. The average estimation time and the sum of square estimation error are used to compare performance of these estimators. Results of the case studies are analyzed and trade-offs are discussed.
Date Created
2013
Agent