Uranium Isotope Variations Across Key Evolutionary Intervals in Geological History

156694-Thumbnail Image.png
Description
There is a growing body of evidence that the evolving redox structure of the oceans has been an important influence on the evolutionary trajectory of animals. However, current understanding of connections between marine redox conditions and marine extinctions and recoveries

There is a growing body of evidence that the evolving redox structure of the oceans has been an important influence on the evolutionary trajectory of animals. However, current understanding of connections between marine redox conditions and marine extinctions and recoveries is hampered by limited detailed knowledge of the timing, duration, and extent of marine redox changes.

The recent development of U isotopes (δ238U) in carbonates as a global ocean redox proxy has provided new insight into this problem. Reliable application and interpretation of the δ238U paleoproxy in geological records requires a thorough understanding of the reliability of δ238U recorded by bulk carbonate sediments. In this dissertation, I evaluate the robustness of δ238U paleoproxy by examining δ238U variations in marine carbonates across Permian-Triassic boundary (PTB) sections from different paleogeographic locations. Close agreement of δ238U profiles from coeval carbonate sections thousands of kilometers apart, in different ocean basins, and with different diagenetic histories, strongly suggests that bulk carbonate sediments can reliably preserve primary marine δ238U signals, validating the carbonate U-isotope proxy for global-ocean redox analysis.

To improve understanding of the role of marine redox in shaping the evolutionary trajectory of animals, high-resolution δ238U records were generated across several key evolutionary periods, including the Ediacaran-to-Early Cambrian Explosion of complex life (635-541 Ma) and the delayed Early Triassic Earth system recovery from the PTB extinction (252-246 Ma). Based on U isotope variations in the Ediacaran-to-the Early Cambrian ocean, the initial diversification of the Ediacara biota immediately postdates an episode of pervasive ocean oxygenation across the Shuram event. The subsequent decline and extinction of the Ediacara biota is coincident with an episode of extensive anoxic conditions during the latest Ediacaran Period. These findings suggest that global marine redox changes drove the rise and fall of the Ediacara biota. Based on U isotope variations, the Early Triassic ocean was characterized by multiple episodes of extensive marine anoxia. By comparing the high-resolution δ238U record with the sub-stage ammonoid extinction rate curve, it appears that multiple oscillations in marine anoxia modulated the recovery of marine ecosystems following the latest Permian mass extinction.
Date Created
2018
Agent

High Spatial Resolution 40Ar/39Ar Geochronology of Lunar Impact Melt Rocks

155860-Thumbnail Image.png
Description
Impact cratering has played a key role in the evolution of the solid surfaces of Solar System bodies. While much of Earth’s impact record has been erased, its Moon preserves an extensive history of bombardment. Quantifying the timing of lunar

Impact cratering has played a key role in the evolution of the solid surfaces of Solar System bodies. While much of Earth’s impact record has been erased, its Moon preserves an extensive history of bombardment. Quantifying the timing of lunar impact events is crucial to understanding how impacts have shaped the evolution of early Earth, and provides the basis for estimating the ages of other cratered surfaces in the Solar System.

Many lunar impact melt rocks are complex mixtures of glassy and crystalline “melt” materials and inherited clasts of pre-impact minerals and rocks. If analyzed in bulk, these samples can yield complicated incremental release 40Ar/39Ar spectra, making it challenging to uniquely interpret impact ages. Here, I have used a combination of high-spatial resolution 40Ar/39Ar geochronology and thermal-kinetic modeling to gain new insights into the impact histories recorded by such lunar samples.

To compare my data to those of previous studies, I developed a software tool to account for differences in the decay, isotopic, and monitor age parameters used for different published 40Ar/39Ar datasets. Using an ultraviolet laser ablation microprobe (UVLAMP) system I selectively dated melt and clast components of impact melt rocks collected during the Apollo 16 and 17 missions. UVLAMP 40Ar/39Ar data for samples 77135, 60315, 61015, and 63355 show evidence of open-system behavior, and provide new insights into how to interpret some complexities of published incremental heating 40Ar/39Ar spectra. Samples 77115, 63525, 63549, and 65015 have relatively simple thermal histories, and UVLAMP 40Ar/39Ar data for the melt components of these rocks indicate the timing of impact events—spanning hundreds of millions of years—that influenced the Apollo 16 and 17 sites. My modeling and UVLAMP 40Ar/39Ar data for sample 73217 indicate that some impact melt rocks can quantitatively retain evidence for multiple melt-producing impact events, and imply that such polygenetic rocks should be regarded as high-value sampling opportunities during future exploration missions to cratered planetary surfaces. Collectively, my results complement previous incremental heating 40Ar/39Ar studies, and support interpretations that the Moon experienced a prolonged period of heavy bombardment early in its history.
Date Created
2017
Agent

Isotopic investigations of meteoritic materials: from earliest-formed solids to planetary bodies

155222-Thumbnail Image.png
Description
The beginning of our Solar System, including events such as the formation of the first solids as well as the accretion and differentiation of planetary bodies, is recorded in meteoritic material. This record can be deciphered using petrographic, geochemical and

The beginning of our Solar System, including events such as the formation of the first solids as well as the accretion and differentiation of planetary bodies, is recorded in meteoritic material. This record can be deciphered using petrographic, geochemical and isotopic investigations of different classes of meteorites and their components. In this dissertation, I have investigated a variety of isotope systematics in chondritic and achondritic meteorites to understand processes that have shaped our Solar System. Specifically, the investigations conducted here are in two main areas: 1) Hydrogen isotope systematics in a meteorite representing the freshest known sample of the martian crust, and 2) Isotopic studies (specifically relating to high resolution chronology, nucleosynthetic anomalies and mass-dependent fractionations) in calcium-aluminum-rich inclusions, which are thought to be the earliest-formed solids in the Solar System. Chapter 1 of this dissertation presents a review of the hydrogen isotopic compositions of various planetary bodies and reservoirs in the Solar System, which could serve as tracers for the volatile sources. Chapter 2 focuses on an investigation of the hydrogen isotopic systematics in the freshest martian meteorite fall, Tissint, using the Cameca IMS-6f secondary ion mass spectrometer (SIMS). These first two chapters comprise the first part of this dissertation. The second part is comprised of chapters 3 through 6 and is focused on isotopic analyses of Calcium-Aluminum-rich Inclusions (CAIs). Chapter 3 is a review of CAIs, which record some of the earliest processes that occurred in the solar nebula. Chapter 4 presents the results of an investigation of the 26Al-26Mg short-lived chronometer (half-life ~0.72 Ma) in two CAIs and their Wark-Lovering (WL) rims from a CV3 carbonaceous chondrite using the Cameca NanoSIMS 50L. Chapter 5 is focused on the results of a study of the Zr isotope compositions of a suite of 15 CAIs from different carbonaceous chondrites using multicollector inductively coupled plasma mass spectrometry (MC-ICPMS), in order to identify nucleosynthetic anomalies in the CAI-forming region. Chapter 6 focuses on the mass-dependent Mg isotopic compositions measured in 11 CAIs from the Allende CV3 carbonaceous chondrite using MC-ICPMS, to evaluate effects of thermal processing on CAIs.
Date Created
2016
Agent

Shock metamorphism in ordinary chondrites: constraining pressure and temperature history

154970-Thumbnail Image.png
Description
Shock metamorphism in meteorites constrains the impact histories of asteroids and planets. Shock-induced high-pressure (HP) minerals can provide more precise estimates of shock conditions than shock-induced deformation effects. In this research, I use shock features, particularly HP minerals, in ordinary-chondrite

Shock metamorphism in meteorites constrains the impact histories of asteroids and planets. Shock-induced high-pressure (HP) minerals can provide more precise estimates of shock conditions than shock-induced deformation effects. In this research, I use shock features, particularly HP minerals, in ordinary-chondrite samples to constrain not only shock pressures but also the pressure-temperature-time (P-T-t) paths they experienced.

Highly shocked L5/6 chondrites Acfer 040, Mbale, NWA 091 and Chico and LL6 chondrite NWA 757 were used to investigate a variety of shock pressures and post-shock annealing histories. NWA 757 is the only highly shocked LL chondrite that includes abundant HP minerals. The assemblage of ringwoodite and majoritic garnet indicates an equilibration shock pressure of ~20 GPa, similar to many strongly shocked L chondrites. Acfer 040 is one of the only two chondrite samples with bridgmanite (silicate perovskite), suggesting equilibration pressure >25 GPa. The bridgmanite, which is unstable at low-pressure, was mostly vitrified during post-shock cooling. Mbale demonstrates an example of elevated post-shock temperature resulting in back-transformation of ringwoodite to olivine. In contrast, majoritic garnet in Mbale survives as unambiguous evidence of strong shock. In these two samples, HP minerals are exclusively associated with shock melt, indicating that elevated shock temperatures are required for rapid mineral transformations during the transient shock pulse. However, elevated post-shock temperatures can destroy HP minerals: in temperature sequence from bridgmanite to ringwoodite then garnet. NWA 091 and Chico are impact melt breccias with pervasive melting, blackening of silicates, recrystallization of host rock but no HP minerals. These features indicate near whole-rock-melting conditions. However, the elevated post-shock temperatures of these samples has annealed out HP signatures. The observed shock features result from a complex P-T-t path and may not directly reflect the peak shock pressure. Although HP minerals provide robust evidence of high pressure, their occurrence also requires high shock temperatures and rapid cooling during the shock pulse. The most highly shocked samples lack HP signatures but have abundant high-temperature features formed after pressure release.
Date Created
2016
Agent

Solar wind sodium and potassium abundance analysis in Genesis diamond-on-silicon and silicon bulk solar wind collectors, and how hydration affects the microtexture of olivine phase transformation at 18 GPa

154194-Thumbnail Image.png
Description
The present work covers two distinct microanalytical studies that address issues in planetary materials: (1) Genesis Na and K solar wind (SW) measurements, and (2) the effect of water on high-pressure olivine phase transformations.

NASA’s Genesis mission collected SW samples for

The present work covers two distinct microanalytical studies that address issues in planetary materials: (1) Genesis Na and K solar wind (SW) measurements, and (2) the effect of water on high-pressure olivine phase transformations.

NASA’s Genesis mission collected SW samples for terrestrial analysis to create a baseline of solar chemical abundances based on direct measurement of solar material. Traditionally, solar abundances are estimated using spectroscopic or meteoritic data. This study measured bulk SW Na and K in two different Genesis SW collector materials (diamond-like carbon (DlC) and silicon) for comparison with these other solar references. Novel techniques were developed for Genesis DlC analysis. Solar wind Na fluence measurements derived from backside depth profiling are generally lower in DlC than Si, despite the use of internal standards. Nevertheless, relative to Mg, the average SW Na and K abundances measured in Genesis wafers are in agreement with solar photospheric and CI chondrite abundances, and with other SW elements with low first ionization potential (within error). The average Genesis SW Na and K fluences are 1.01e11 (+9e09, -2e10) atoms/cm2 and 5.1e09 (+8e08, -8e08) atoms/cm2, respectively. The errors reflect average systematic errors. Results have implications for (1) SW formation models, (2) cosmochemistry based on solar material rather than photospheric measurements or meteorites, and (3) the accurate measurement of solar wind ion abundances in Genesis collectors, particularly DlC and Si.

Deep focus earthquakes have been attributed to rapid transformation of metastable olivine within the mantle transition zone (MTZ). However, the presence of H2O acts to overcome metastability, promoting phase transformation in olivine, so olivine must be relatively anhydrous (<75 ppmw) to remain metastable to depth. A microtextural analysis of olivine phase transformation products was conducted to test the feasibility for subducting olivine to persist metastably to the MTZ. Transformation (as intracrystalline or rim nucleation) shifts from ringwoodite to ringwoodite-wadsleyite nucleation with decreasing H2O content within olivine grains. To provide accurate predictions for olivine metastability at depth, olivine transformation models must reflect how changing H2O distributions lead to complex changes in strain and reaction rates within different parts of a transforming olivine grain.
Date Created
2015
Agent

Hydrogen isotopic systematics of nominally anhydrous phases in martian meteorites

153685-Thumbnail Image.png
Description
Hydrogen isotope compositions of the martian atmosphere and crustal materials can provide unique insights into the hydrological and geological evolution of Mars. While the present-day deuterium-to-hydrogen ratio (D/H) of the Mars atmosphere is well constrained (~6 times that of terrestrial

Hydrogen isotope compositions of the martian atmosphere and crustal materials can provide unique insights into the hydrological and geological evolution of Mars. While the present-day deuterium-to-hydrogen ratio (D/H) of the Mars atmosphere is well constrained (~6 times that of terrestrial ocean water), that of its deep silicate interior (specifically, the mantle) is less so. In fact, the hydrogen isotope composition of the primordial martian mantle is of great interest since it has implications for the origin and abundance of water on that planet. Martian meteorites could provide key constraints in this regard, since they crystallized from melts originating from the martian mantle and contain phases that potentially record the evolution of the H2O content and isotopic composition of the interior of the planet over time. Examined here are the hydrogen isotopic compositions of Nominally Anhydrous Phases (NAPs) in eight martian meteorites (five shergottites and three nakhlites) using Secondary Ion Mass Spectrometry (SIMS).

This study presents a total of 113 individual analyses of H2O contents and hydrogen isotopic compositions of NAPs in the shergottites Zagami, Los Angeles, QUE 94201, SaU 005, and Tissint, and the nakhlites Nakhla, Lafayette, and Yamato 000593. The hydrogen isotopic variation between and within meteorites may be due to one or more processes including: interaction with the martian atmosphere, magmatic degassing, subsolidus alteration (including shock), and/or terrestrial contamination. Taking into consideration the effects of these processes, the hydrogen isotope composition of the martian mantle may be similar to that of the Earth. Additionally, this study calculated upper limits on the H2O contents of the shergottite and nakhlite parent melts based on the measured minimum H2O abundances in their maskelynites and pyroxenes, respectively. These calculations, along with some petrogenetic assumptions based on previous studies, were subsequently used to infer the H2O contents of the mantle source reservoirs of the depleted shergottites (200-700 ppm) and the nakhlites (10-100 ppm). This suggests that mantle source of the nakhlites is systematically drier than that of the depleted shergottites, and the upper mantle of Mars may have preserved significant heterogeneity in its H2O content. Additionally, this range of H2O contents is not dissimilar to the range observed for the Earth’s upper mantle.
Date Created
2015
Agent

Early solar system to deep mantle: the geochemistry of planetary systems

152916-Thumbnail Image.png
Description
The origin of the solar system and formation of planets such as Earth are among the most fascinating, outstanding scientific problems. From theoretical models to natural observations, it is possible to infer a general way of how the solar system

The origin of the solar system and formation of planets such as Earth are among the most fascinating, outstanding scientific problems. From theoretical models to natural observations, it is possible to infer a general way of how the solar system evolved from the gravitational collapse of the molecular cloud to accretion and differentiation of planetary-sized bodies. This dissertation attempts to place additional constraints on the source, distribution, and evolution of chemical variability in the early solar system, Mars, and Earth.

A new method was developed for the measurement of titanium isotopes in calcium-aluminum-rich inclusions (CAIs) by laser ablation multi-collector inductively coupled plasma mass spectrometry. The isotopic compositions of 17 Allende CAIs define a narrow range with clearly resolved excesses in 46Ti and 50Ti and suggests that "normal" CAIs formed from a relatively uniform reservoir. Petrologic and isotopic analysis of a new FUN (Fractionated and Unknown Nuclear effects) CAI suggests that normal and FUN CAIs condensed in similar environments, but subsequently evolved under vastly different conditions.

Volatiles may have influenced the formation and evolution of basaltic magmas on Mars. Light lithophile element (LLE) and fluorine (F) concentrations and isotopic compositions of pyroxene determined in situ in several Martian meteorites suggests that the primary magmatic signature of LLE and F zonation in Shergottite pyroxene has been disturbed by post-crystallization diffusive equilibration. Using relevant crystal-melt partition coefficients the F contents for Martian meteorite parental melts are ~910 and ~220 ppm. Estimates of the F content in the Shergottite and Nakhlite source regions are similar to that of mid-ocean ridge basalts (MORB) and ocean island basalts (OIB), respectively, here on Earth.

Noble gas systematics of OIBs relative to MORBs, suggests OIBs preferentially sample a primordial reservoir located within Earth's mantle. Geodynamic calculations were performed to investigate the time-dependent rate of material entrained into plumes from these primordial reservoirs. These models predict melts rising to the surface will contain variable proportions of primordial material. The results demonstrate that although high 3He/4He ratios may mandate a mantle plume that samples a primordial reservoir, more MORB-like 3He/4He ratios in OIBs do not preclude a deep plume source.
Date Created
2014
Agent

Extinct radionuclides in the early Solar System: the initial Solar System abundance of ⁶⁰Fe from angrites and unequilibrated ordinary chondrites and ²⁶Al-²⁶Mg chronology of ungrouped achondrites

151290-Thumbnail Image.png
Description
The presence of a number of extinct radionuclides in the early Solar System (SS) is known from geochemical and isotopic studies of meteorites and their components. The half-lives of these isotopes are short relative to the age of the SS,

The presence of a number of extinct radionuclides in the early Solar System (SS) is known from geochemical and isotopic studies of meteorites and their components. The half-lives of these isotopes are short relative to the age of the SS, such that they have now decayed to undetectable levels. They can be inferred to exist in the early SS from the presence of their daughter nuclides in meteoritic materials that formed while they were still extant. The extinct radionuclides are particularly useful as fine-scale chronometers for events in the early SS. They can also be used to help constrain the astrophysical setting of the formation of the SS because their short half-lives and unique formation environments yield information about the sources and timing of delivery of material to the protoplanetary disk. Some extinct radionuclides are considered evidence that the Sun interacted with a massive star (supernova) early in its history. The abundance of 60Fe in the early SS is particularly useful for constraining the astrophysical environment of the Sun's formation because, if present in sufficient abundance, its only likely source is injection from a nearby supernova. The initial SS abundance of 60Fe is poorly constrained at the present time, with estimates varying by 1-2 orders of magnitude. I have determined the 60Fe-60Ni isotope systematics of ancient, well-preserved meteorites using high-precision mass spectrometry to better constrain the initial SS abundance of 60Fe. I find identical estimates of the initial 60Fe abundance from both differentiated basaltic meteorites and from components of primitive chondrites formed in the Solar nebula, which suggest a lower 60Fe abundance than other recent estimates. With recent improved meteorite collection efforts there are more rare ungrouped meteorites being found that hold interesting clues to the origin and evolution of early SS objects. I use the 26Al-26Mg extinct radionuclide chronometer to constrain the ages of several recently recovered meteorites that sample previously unknown asteroid lithologies, including the only know felsic meteorite from an asteroid and two other ungrouped basaltic achondrites. These results help broaden our understanding of the timescales involved in igneous differentiation processes in the early SS.
Date Created
2012
Agent

The petrogenesis of angrites and martian meteorites inferred from isotope and trace element systematics

151279-Thumbnail Image.png
Description
The present understanding of the formation and evolution of the earliest bodies in the Solar System is based in large part on geochemical and isotopic evidences contained within meteorites. The differentiated meteorites (meteorites originating from bodies that have experienced partial

The present understanding of the formation and evolution of the earliest bodies in the Solar System is based in large part on geochemical and isotopic evidences contained within meteorites. The differentiated meteorites (meteorites originating from bodies that have experienced partial to complete melting) are particularly useful for deciphering magmatic processes occurring in the early Solar System. A rare group of differentiated meteorites, the angrites, are uniquely suited for such work. The angrites have ancient crystallization ages, lack secondary processing, and have been minimally affected by shock metamorphism, thus allowing them to retain their initial geochemical and isotopic characteristics at the time of formation. The scarcity of angrite samples made it difficult to conduct comprehensive investigations into the formation history of this unique meteorite group. However, a dramatic increase in the number of angrites recovered in recent years presents the opportunity to expand our understanding of their petrogenesis, as well as further refine our knowledge of the initial isotopic abundances in the early Solar System as recorded by their isotopic systematics. Using a combination of geochemical tools (radiogenic isotope chronometers and trace element chemistry), I have investigated the petrogenetic history of a group of four angrites that sample a range of formation conditions (cooling histories) and crystallization ages. Through isotope ratio measurements, I have examined a comprehensive set of long- and short-lived radiogenic isotope systems (26Al-26Mg, 87Rb-87Sr, 146Sm-142Nd, 147Sm-143Nd, and 176Lu-176Hf) within these four angrites. The results of these measurements provide information regarding crystallization ages, as well as revised estimates for the initial isotopic abundances of several key elements in the early Solar System. The determination of trace element concentrations in individual mineral phases, as well as bulk rock samples, provides important constraints on magmatic processes occurring on the angrite parent body. The measured trace element abundances are used to estimate the composition of the parent melts of individual angrites, examine crystallization conditions, and investigate possible geochemical affinities between various angrites. The new geochemical and isotopic measurements presented here significantly expand our understanding of the geochemical conditions found on the angrite parent body and the environment in which these meteorites formed.
Date Created
2012
Agent

Incorporation and preservation of molybdenum and uranium isotope variations in modern marine sediments

151140-Thumbnail Image.png
Description
Molybdenum and uranium isotope variations are potentially powerful tools for reconstructing the paleoredox history of seawater. Reliable application and interpretation of these proxies requires not only detailed knowledge about the fractionation factors that control the distribution of molybdenum and uranium

Molybdenum and uranium isotope variations are potentially powerful tools for reconstructing the paleoredox history of seawater. Reliable application and interpretation of these proxies requires not only detailed knowledge about the fractionation factors that control the distribution of molybdenum and uranium isotopes in the marine system, but also a thorough understanding of the diagenetic processes that may affect molybdenum and uranium isotopes entering the rock record. Using samples from the Black Sea water column, the first water column profile of 238U/235U variations from a modern euxinic basin has been measured. This profile allows the direct determination of the 238U/235U fractionation factor in a euxinic marine setting. More importantly however, these data demonstrate the extent of Rayleigh fractionation of U isotopes that can occur in euxinic restricted basins. Because of this effect, the offset of 238U/235U between global average seawater and coeval black shales deposited in restricted basins is expected to depend on the degree of local uranium drawdown from the water column, potentially complicating the interpretation 238U/235U paleorecords. As an alternative to the black shales typically used for paleoredox reconstructions, molybdenum and uranium isotope variations in bulk carbonate sediments from the Bahamas are examined. The focus of this work was to determine what processes, if any, fractionate molybdenum and uranium isotopes during incorporation into bulk carbonate sediments and their subsequent diagenesis. The results demonstrate that authigenic accumulation of molybdenum and uranium from anoxic and sulfidic pore waters is a dominant process controlling the concentration and isotopic composition of these sediments during early diagenesis. Examination of ODP drill core samples from the Bahamas reveals similar behavior for sediments during the first ~780ka of burial, but provides important examples where isolated cores and samples occasionally demonstrate additional fractionation, the cause of which remains poorly understood.
Date Created
2012
Agent