Non-linear system identification using compressed sensing

150319-Thumbnail Image.png
Description
This thesis describes an approach to system identification based on compressive sensing and demonstrates its efficacy on a challenging classical benchmark single-input, multiple output (SIMO) mechanical system consisting of an inverted pendulum on a cart. Due to its inherent non-linearity

This thesis describes an approach to system identification based on compressive sensing and demonstrates its efficacy on a challenging classical benchmark single-input, multiple output (SIMO) mechanical system consisting of an inverted pendulum on a cart. Due to its inherent non-linearity and unstable behavior, very few techniques currently exist that are capable of identifying this system. The challenge in identification also lies in the coupled behavior of the system and in the difficulty of obtaining the full-range dynamics. The differential equations describing the system dynamics are determined from measurements of the system's input-output behavior. These equations are assumed to consist of the superposition, with unknown weights, of a small number of terms drawn from a large library of nonlinear terms. Under this assumption, compressed sensing allows the constituent library elements and their corresponding weights to be identified by decomposing a time-series signal of the system's outputs into a sparse superposition of corresponding time-series signals produced by the library components. The most popular techniques for non-linear system identification entail the use of ANN's (Artificial Neural Networks), which require a large number of measurements of the input and output data at high sampling frequencies. The method developed in this project requires very few samples and the accuracy of reconstruction is extremely high. Furthermore, this method yields the Ordinary Differential Equation (ODE) of the system explicitly. This is in contrast to some ANN approaches that produce only a trained network which might lose fidelity with change of initial conditions or if facing an input that wasn't used during its training. This technique is expected to be of value in system identification of complex dynamic systems encountered in diverse fields such as Biology, Computation, Statistics, Mechanics and Electrical Engineering.
Date Created
2011
Agent

The detection of reliability prediction cues in manufacturing data from statistically controlled processes

149993-Thumbnail Image.png
Description
Many products undergo several stages of testing ranging from tests on individual components to end-item tests. Additionally, these products may be further "tested" via customer or field use. The later failure of a delivered product may in some cases be

Many products undergo several stages of testing ranging from tests on individual components to end-item tests. Additionally, these products may be further "tested" via customer or field use. The later failure of a delivered product may in some cases be due to circumstances that have no correlation with the product's inherent quality. However, at times, there may be cues in the upstream test data that, if detected, could serve to predict the likelihood of downstream failure or performance degradation induced by product use or environmental stresses. This study explores the use of downstream factory test data or product field reliability data to infer data mining or pattern recognition criteria onto manufacturing process or upstream test data by means of support vector machines (SVM) in order to provide reliability prediction models. In concert with a risk/benefit analysis, these models can be utilized to drive improvement of the product or, at least, via screening to improve the reliability of the product delivered to the customer. Such models can be used to aid in reliability risk assessment based on detectable correlations between the product test performance and the sources of supply, test stands, or other factors related to product manufacture. As an enhancement to the usefulness of the SVM or hyperplane classifier within this context, L-moments and the Western Electric Company (WECO) Rules are used to augment or replace the native process or test data used as inputs to the classifier. As part of this research, a generalizable binary classification methodology was developed that can be used to design and implement predictors of end-item field failure or downstream product performance based on upstream test data that may be composed of single-parameter, time-series, or multivariate real-valued data. Additionally, the methodology provides input parameter weighting factors that have proved useful in failure analysis and root cause investigations as indicators of which of several upstream product parameters have the greater influence on the downstream failure outcomes.
Date Created
2011
Agent

Opportunistic scheduling, cooperative relaying and multicast in wireless networks

149544-Thumbnail Image.png
Description
This dissertation builds a clear understanding of the role of information in wireless networks, and devises adaptive strategies to optimize the overall performance. The meaning of information ranges from channel
etwork states to the structure of the signal itself. Under the

This dissertation builds a clear understanding of the role of information in wireless networks, and devises adaptive strategies to optimize the overall performance. The meaning of information ranges from channel
etwork states to the structure of the signal itself. Under the common thread of characterizing the role of information, this dissertation investigates opportunistic scheduling, relaying and multicast in wireless networks. To assess the role of channel state information, the problem of opportunistic distributed opportunistic scheduling (DOS) with incomplete information is considered for ad-hoc networks in which many links contend for the same channel using random access. The objective is to maximize the system throughput. In practice, link state information is noisy, and may result in throughput degradation. Therefore, refining the state information by additional probing can improve the throughput, but at the cost of further probing. Capitalizing on optimal stopping theory, the optimal scheduling policy is shown to be threshold-based and is characterized by either one or two thresholds, depending on network settings. To understand the benefits of side information in cooperative relaying scenarios, a basic model is explored for two-hop transmissions of two information flows which interfere with each other. While the first hop is a classical interference channel, the second hop can be treated as an interference channel with transmitter side information. Various cooperative relaying strategies are developed to enhance the achievable rate. In another context, a simple sensor network is considered, where a sensor node acts as a relay, and aids fusion center in detecting an event. Two relaying schemes are considered: analog relaying and digital relaying. Sufficient conditions are provided for the optimality of analog relaying over digital relaying in this network. To illustrate the role of information about the signal structure in joint source-channel coding, multicast of compressible signals over lossy channels is studied. The focus is on the network outage from the perspective of signal distortion across all receivers. Based on extreme value theory, the network outage is characterized in terms of key parameters. A new method using subblock network coding is devised, which prioritizes resource allocation based on the signal information structure.
Date Created
2011
Agent