Wireless network design and optimization: from social awareness to security

153686-Thumbnail Image.png
Description
A principal goal of this dissertation is to study wireless network design and optimization with the focus on two perspectives: 1) socially-aware mobile networking and computing; 2) security and privacy in wireless networking. Under this common theme, this dissertation can

A principal goal of this dissertation is to study wireless network design and optimization with the focus on two perspectives: 1) socially-aware mobile networking and computing; 2) security and privacy in wireless networking. Under this common theme, this dissertation can be broadly organized into three parts.

The first part studies socially-aware mobile networking and computing. First, it studies random access control and power control under a social group utility maximization (SGUM) framework. The socially-aware Nash equilibria (SNEs) are derived and analyzed. Then, it studies mobile crowdsensing under an incentive mechanism that exploits social trust assisted reciprocity (STAR). The efficacy of the STAR mechanism is thoroughly investigated. Next, it studies mobile users' data usage behaviors under the impact of social services and the wireless operator's pricing. Based on a two-stage Stackelberg game formulation, the user demand equilibrium (UDE) is analyzed in Stage II and the optimal pricing strategy is developed in Stage I. Last, it studies opportunistic cooperative networking under an optimal stopping framework with two-level decision-making. For both cases with or without dedicated relays, the optimal relaying strategies are derived and analyzed.

The second part studies radar sensor network coverage for physical security. First, it studies placement of bistatic radar (BR) sensor networks for barrier coverage. The optimality of line-based placement is analyzed, and the optimal placement of BRs on a line segment is characterized. Then, it studies the coverage of radar sensor networks that exploits the Doppler effect. Based on a Doppler coverage model, an efficient method is devised to characterize Doppler-covered regions and an algorithm is developed to find the minimum radar density required for Doppler coverage.

The third part studies cyber security and privacy in socially-aware networking and computing. First, it studies random access control, cooperative jamming, and spectrum access under an extended SGUM framework that incorporates negative social ties. The SNEs are derived and analyzed. Then, it studies pseudonym change for personalized location privacy under the SGUM framework. The SNEs are analyzed and an efficient algorithm is developed to find an SNE with desirable properties.
Date Created
2015
Agent

Impact of social structure on wireless networking: modeling and utility

153629-Thumbnail Image.png
Description
The explosive growth of data generated from different services has opened a new vein of research commonly called ``big data.'' The sheer volume of the information in this data has yielded new applications in a wide range of fields,

The explosive growth of data generated from different services has opened a new vein of research commonly called ``big data.'' The sheer volume of the information in this data has yielded new applications in a wide range of fields, but the difficulties inherent in processing the enormous amount of data, as well as the rate at which it is generated, also give rise to significant challenges. In particular, processing, modeling, and understanding the structure of online social networks is computationally difficult due to these challenges. The goal of this study is twofold: first to present a new networked data processing framework to model this social structure, and second to highlight the wireless networking gains possible by using this social structure.

The first part of the dissertation considers a new method for modeling social networks via probabilistic graphical models. Specifically, this new method employs the t-cherry junction tree, a recent advancement in probabilistic graphical models, to develop a compact representation and good approximation of an otherwise intractable probabilistic model. There are a number of advantages in this approach: 1) the best approximation possible via junction trees belongs to the class of t-cherry junction trees; 2) constructing a t-cherry junction tree can be largely parallelized; and 3) inference can be performed using distributed computation. To improve the quality of approximation, an algorithm to build a higher order tree gracefully from an existing one, without constructing it from scratch, is developed. this approach is applied to Twitter data containing 100,000 nodes to study the problem of recommending connections to new users.

Next, the t-cherry junction tree framework is extended by considering the impact of estimating the distributions involved from a training data set. Understanding this impact is vital to real-world applications as distributions are not known perfectly, but rather generated from training data. First, the fidelity of the t-cherry junction tree approximation due to this estimation is quantified. Then the scaling behavior, in terms of the size of the t-cherry junction tree, is approximated to show that higher-order t-cherry junction trees, which with perfect information are higher fidelity approximations, may actually result in decreased fidelity due to the difficulties in accurately estimating higher-dimensional distributions. Finally, this part concludes by demonstrating these findings by considering a distributed detection situation in which the sensors' measurements are correlated.

Having developed a framework to model social structure in online social networks, the study then highlights two approaches for utilizing this social network data in existing wireless communication networks. The first approach is a novel application: using social networks to enhance device-to-device wireless communication. It is well known that wireless communication can be significantly improved by utilizing relays to aid in transmission. Rather than deploying dedicated relays, a system is designed in which users can relay traffic for other users if there is a shared social trust between them, e.g., they are ``friends'' on Facebook, and for users that do not share social trust, implements a coalitional game framework to motivate users to relay traffic for each other. This framework guarantees that all users improve their throughput via relaying while ensuring that each user will function as a relay only if there is a social trust relationship or, if there is no social trust, a cycle of reciprocity is established in which a set of users will agree to relay for each other. This new system shows significant throughput gain in simulated networks that utilize real-world social network traces.

The second application of social structure to wireless communication is an approach to reduce the congestion in cellular networks during peak times. This is achieved by two means: preloading and offloading. Preloading refers to the process of using social network data to predict user demand and serve some users early, before the cellular network traffic peaks. Offloading allows users that have already obtained a copy of the content to opportunistically serve other users using device-to-device communication, thus eliminating the need for some cellular traffic. These two methods work especially well in tandem, as preloading creates a base of users that can serve later users via offloading. These two processes can greatly reduce the peak cellular traffic under ideal conditions, and in a more realistic situation, the impact of uncertainty in human mobility and the social network structure is analyzed. Even with the randomness inherent in these processes, both preloading and offloading offer substantial improvement. Finally, potential difficulties in preloading multiple pieces of content simultaneously are highlighted, and a heuristic method to solve these challenges is developed.
Date Created
2015
Agent

Estimation of subspace occupancy

153287-Thumbnail Image.png
Description
The ability to identify unoccupied resources in the radio spectrum is a key capability for opportunistic users in a cognitive radio environment. This paper draws upon and extends geometrically based ideas in statistical signal processing to develop estimators for the

The ability to identify unoccupied resources in the radio spectrum is a key capability for opportunistic users in a cognitive radio environment. This paper draws upon and extends geometrically based ideas in statistical signal processing to develop estimators for the rank and the occupied subspace in a multi-user environment from multiple temporal samples of the signal received at a single antenna. These estimators enable identification of resources, such as the orthogonal complement of the occupied subspace, that may be exploitable by an opportunistic user. This concept is supported by simulations showing the estimation of the number of users in a simple CDMA system using a maximum a posteriori (MAP) estimate for the rank. It was found that with suitable parameters, such as high SNR, sufficient number of time epochs and codes of appropriate length, the number of users could be correctly estimated using the MAP estimator even when the noise variance is unknown. Additionally, the process of identifying the maximum likelihood estimate of the orthogonal projector onto the unoccupied subspace is discussed.
Date Created
2014
Agent

Operator-valued frames associated with measure spaces

153153-Thumbnail Image.png
Description
Since Duffin and Schaeffer's introduction of frames in 1952, the concept of a frame has received much attention in the mathematical community and has inspired several generalizations. The focus of this thesis is on the concept of an operator-valued frame

Since Duffin and Schaeffer's introduction of frames in 1952, the concept of a frame has received much attention in the mathematical community and has inspired several generalizations. The focus of this thesis is on the concept of an operator-valued frame (OVF) and a more general concept called herein an operator-valued frame associated with a measure space (MS-OVF), which is sometimes called a continuous g-frame. The first of two main topics explored in this thesis is the relationship between MS-OVFs and objects prominent in quantum information theory called positive operator-valued measures (POVMs). It has been observed that every MS-OVF gives rise to a POVM with invertible total variation in a natural way. The first main result of this thesis is a characterization of which POVMs arise in this way, a result obtained by extending certain existing Radon-Nikodym theorems for POVMs. The second main topic investigated in this thesis is the role of the theory of unitary representations of a Lie group G in the construction of OVFs for the L^2-space of a relatively compact subset of G. For G=R, Duffin and Schaeffer have given general conditions that ensure a sequence of (one-dimensional) representations of G, restricted to (-1/2,1/2), forms a frame for L^{2}(-1/2,1/2), and similar conditions exist for G=R^n. The second main result of this thesis expresses conditions related to Duffin and Schaeffer's for two more particular Lie groups: the Euclidean motion group on R^2 and the (2n+1)-dimensional Heisenberg group. This proceeds in two steps. First, for a Lie group admitting a uniform lattice and an appropriate relatively compact subset E of G, the Selberg Trace Formula is used to obtain a Parseval OVF for L^{2}(E) that is expressed in terms of irreducible representations of G. Second, for the two particular Lie groups an appropriate set E is found, and it is shown that for each of these groups, with suitably parametrized unitary duals, the Parseval OVF remains an OVF when perturbations are made to the parameters of the included representations.
Date Created
2014
Agent

Network interdependence and information dynamics in cyber-physical systems

151475-Thumbnail Image.png
Description
The cyber-physical systems (CPS) are emerging as the underpinning technology for major industries in the 21-th century. This dissertation is focused on two fundamental issues in cyber-physical systems: network interdependence and information dynamics. It consists of the following two main

The cyber-physical systems (CPS) are emerging as the underpinning technology for major industries in the 21-th century. This dissertation is focused on two fundamental issues in cyber-physical systems: network interdependence and information dynamics. It consists of the following two main thrusts. The first thrust is targeted at understanding the impact of network interdependence. It is shown that a cyber-physical system built upon multiple interdependent networks are more vulnerable to attacks since node failures in one network may result in failures in the other network, causing a cascade of failures that would potentially lead to the collapse of the entire infrastructure. There is thus a need to develop a new network science for modeling and quantifying cascading failures in multiple interdependent networks, and to develop network management algorithms that improve network robustness and ensure overall network reliability against cascading failures. To enhance the system robustness, a "regular" allocation strategy is proposed that yields better resistance against cascading failures compared to all possible existing strategies. Furthermore, in view of the load redistribution feature in many physical infrastructure networks, e.g., power grids, a CPS model is developed where the threshold model and the giant connected component model are used to capture the node failures in the physical infrastructure network and the cyber network, respectively. The second thrust is centered around the information dynamics in the CPS. One speculation is that the interconnections over multiple networks can facilitate information diffusion since information propagation in one network can trigger further spread in the other network. With this insight, a theoretical framework is developed to analyze information epidemic across multiple interconnecting networks. It is shown that the conjoining among networks can dramatically speed up message diffusion. Along a different avenue, many cyber-physical systems rely on wireless networks which offer platforms for information exchanges. To optimize the QoS of wireless networks, there is a need to develop a high-throughput and low-complexity scheduling algorithm to control link dynamics. To that end, distributed link scheduling algorithms are explored for multi-hop MIMO networks and two CSMA algorithms under the continuous-time model and the discrete-time model are devised, respectively.
Date Created
2012
Agent

Statistical signal processing of ESI-TOF-MS for biomarker discovery

151436-Thumbnail Image.png
Description
Signal processing techniques have been used extensively in many engineering problems and in recent years its application has extended to non-traditional research fields such as biological systems. Many of these applications require extraction of a signal or parameter of interest

Signal processing techniques have been used extensively in many engineering problems and in recent years its application has extended to non-traditional research fields such as biological systems. Many of these applications require extraction of a signal or parameter of interest from degraded measurements. One such application is mass spectrometry immunoassay (MSIA) which has been one of the primary methods of biomarker discovery techniques. MSIA analyzes protein molecules as potential biomarkers using time of flight mass spectrometry (TOF-MS). Peak detection in TOF-MS is important for biomarker analysis and many other MS related application. Though many peak detection algorithms exist, most of them are based on heuristics models. One of the ways of detecting signal peaks is by deploying stochastic models of the signal and noise observations. Likelihood ratio test (LRT) detector, based on the Neyman-Pearson (NP) lemma, is an uniformly most powerful test to decision making in the form of a hypothesis test. The primary goal of this dissertation is to develop signal and noise models for the electrospray ionization (ESI) TOF-MS data. A new method is proposed for developing the signal model by employing first principles calculations based on device physics and molecular properties. The noise model is developed by analyzing MS data from careful experiments in the ESI mass spectrometer. A non-flat baseline in MS data is common. The reasons behind the formation of this baseline has not been fully comprehended. A new signal model explaining the presence of baseline is proposed, though detailed experiments are needed to further substantiate the model assumptions. Signal detection schemes based on these signal and noise models are proposed. A maximum likelihood (ML) method is introduced for estimating the signal peak amplitudes. The performance of the detection methods and ML estimation are evaluated with Monte Carlo simulation which shows promising results. An application of these methods is proposed for fractional abundance calculation for biomarker analysis, which is mathematically robust and fundamentally different than the current algorithms. Biomarker panels for type 2 diabetes and cardiovascular disease are analyzed using existing MS analysis algorithms. Finally, a support vector machine based multi-classification algorithm is developed for evaluating the biomarkers' effectiveness in discriminating type 2 diabetes and cardiovascular diseases and is shown to perform better than a linear discriminant analysis based classifier.
Date Created
2012
Agent

Some topics concerning the singular value decomposition and generalized singular value decomposition

151128-Thumbnail Image.png
Description
This dissertation involves three problems that are all related by the use of the singular value decomposition (SVD) or generalized singular value decomposition (GSVD). The specific problems are (i) derivation of a generalized singular value expansion (GSVE), (ii) analysis of

This dissertation involves three problems that are all related by the use of the singular value decomposition (SVD) or generalized singular value decomposition (GSVD). The specific problems are (i) derivation of a generalized singular value expansion (GSVE), (ii) analysis of the properties of the chi-squared method for regularization parameter selection in the case of nonnormal data and (iii) formulation of a partial canonical correlation concept for continuous time stochastic processes. The finite dimensional SVD has an infinite dimensional generalization to compact operators. However, the form of the finite dimensional GSVD developed in, e.g., Van Loan does not extend directly to infinite dimensions as a result of a key step in the proof that is specific to the matrix case. Thus, the first problem of interest is to find an infinite dimensional version of the GSVD. One such GSVE for compact operators on separable Hilbert spaces is developed. The second problem concerns regularization parameter estimation. The chi-squared method for nonnormal data is considered. A form of the optimized regularization criterion that pertains to measured data or signals with nonnormal noise is derived. Large sample theory for phi-mixing processes is used to derive a central limit theorem for the chi-squared criterion that holds under certain conditions. Departures from normality are seen to manifest in the need for a possibly different scale factor in normalization rather than what would be used under the assumption of normality. The consequences of our large sample work are illustrated by empirical experiments. For the third problem, a new approach is examined for studying the relationships between a collection of functional random variables. The idea is based on the work of Sunder that provides mappings to connect the elements of algebraic and orthogonal direct sums of subspaces in a Hilbert space. When combined with a key isometry associated with a particular Hilbert space indexed stochastic process, this leads to a useful formulation for situations that involve the study of several second order processes. In particular, using our approach with two processes provides an independent derivation of the functional canonical correlation analysis (CCA) results of Eubank and Hsing. For more than two processes, a rigorous derivation of the functional partial canonical correlation analysis (PCCA) concept that applies to both finite and infinite dimensional settings is obtained.
Date Created
2012
Agent

Bayesian networks and gaussian mixture models in multi-dimensional data analysis with application to religion-conflict data

150929-Thumbnail Image.png
Description
This thesis examines the application of statistical signal processing approaches to data arising from surveys intended to measure psychological and sociological phenomena underpinning human social dynamics. The use of signal processing methods for analysis of signals arising from measurement of

This thesis examines the application of statistical signal processing approaches to data arising from surveys intended to measure psychological and sociological phenomena underpinning human social dynamics. The use of signal processing methods for analysis of signals arising from measurement of social, biological, and other non-traditional phenomena has been an important and growing area of signal processing research over the past decade. Here, we explore the application of statistical modeling and signal processing concepts to data obtained from the Global Group Relations Project, specifically to understand and quantify the effects and interactions of social psychological factors related to intergroup conflicts. We use Bayesian networks to specify prospective models of conditional dependence. Bayesian networks are determined between social psychological factors and conflict variables, and modeled by directed acyclic graphs, while the significant interactions are modeled as conditional probabilities. Since the data are sparse and multi-dimensional, we regress Gaussian mixture models (GMMs) against the data to estimate the conditional probabilities of interest. The parameters of GMMs are estimated using the expectation-maximization (EM) algorithm. However, the EM algorithm may suffer from over-fitting problem due to the high dimensionality and limited observations entailed in this data set. Therefore, the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) are used for GMM order estimation. To assist intuitive understanding of the interactions of social variables and the intergroup conflicts, we introduce a color-based visualization scheme. In this scheme, the intensities of colors are proportional to the conditional probabilities observed.
Date Created
2012
Agent

System identification via basis pursuit

150824-Thumbnail Image.png
Description
This thesis considers the application of basis pursuit to several problems in system identification. After reviewing some key results in the theory of basis pursuit and compressed sensing, numerical experiments are presented that explore the application of basis pursuit to

This thesis considers the application of basis pursuit to several problems in system identification. After reviewing some key results in the theory of basis pursuit and compressed sensing, numerical experiments are presented that explore the application of basis pursuit to the black-box identification of linear time-invariant (LTI) systems with both finite (FIR) and infinite (IIR) impulse responses, temporal systems modeled by ordinary differential equations (ODE), and spatio-temporal systems modeled by partial differential equations (PDE). For LTI systems, the experimental results illustrate existing theory for identification of LTI FIR systems. It is seen that basis pursuit does not identify sparse LTI IIR systems, but it does identify alternate systems with nearly identical magnitude response characteristics when there are small numbers of non-zero coefficients. For ODE systems, the experimental results are consistent with earlier research for differential equations that are polynomials in the system variables, illustrating feasibility of the approach for small numbers of non-zero terms. For PDE systems, it is demonstrated that basis pursuit can be applied to system identification, along with a comparison in performance with another existing method. In all cases the impact of measurement noise on identification performance is considered, and it is empirically observed that high signal-to-noise ratio is required for successful application of basis pursuit to system identification problems.
Date Created
2012
Agent

Micro-particle streak velocimetry: theory, simulation methods and applications

150439-Thumbnail Image.png
Description
This dissertation describes a novel, low cost strategy of using particle streak (track) images for accurate micro-channel velocity field mapping. It is shown that 2-dimensional, 2-component fields can be efficiently obtained using the spatial variation of particle track lengths in

This dissertation describes a novel, low cost strategy of using particle streak (track) images for accurate micro-channel velocity field mapping. It is shown that 2-dimensional, 2-component fields can be efficiently obtained using the spatial variation of particle track lengths in micro-channels. The velocity field is a critical performance feature of many microfluidic devices. Since it is often the case that un-modeled micro-scale physics frustrates principled design methodologies, particle based velocity field estimation is an essential design and validation tool. Current technologies that achieve this goal use particle constellation correlation strategies and rely heavily on costly, high-speed imaging hardware. The proposed image/ video processing based method achieves comparable accuracy for fraction of the cost. In the context of micro-channel velocimetry, the usability of particle streaks has been poorly studied so far. Their use has remained restricted mostly to bulk flow measurements and occasional ad-hoc uses in microfluidics. A second look at the usability of particle streak lengths in this work reveals that they can be efficiently used, after approximately 15 years from their first use for micro-channel velocimetry. Particle tracks in steady, smooth microfluidic flows is mathematically modeled and a framework for using experimentally observed particle track lengths for local velocity field estimation is introduced here, followed by algorithm implementation and quantitative verification. Further, experimental considerations and image processing techniques that can facilitate the proposed methods are also discussed in this dissertation. Unavailability of benchmarked particle track image data motivated the implementation of a simulation framework with the capability to generate exposure time controlled particle track image sequence for velocity vector fields. This dissertation also describes this work and shows that arbitrary velocity fields designed in computational fluid dynamics software tools can be used to obtain such images. Apart from aiding gold-standard data generation, such images would find use for quick microfluidic flow field visualization and help improve device designs.
Date Created
2011
Agent