Reliability and Degradation Characterization for PV Modules and Systems

171806-Thumbnail Image.png
Description
In-field characterization of photovoltaics is crucial to understanding performance and degradation mechanisms, subsequently improving overall reliability and lifespans. Current outdoor characterization is often limited by logistical difficulties, variable weather, and requirements to measure during peak production hours. It becomes a

In-field characterization of photovoltaics is crucial to understanding performance and degradation mechanisms, subsequently improving overall reliability and lifespans. Current outdoor characterization is often limited by logistical difficulties, variable weather, and requirements to measure during peak production hours. It becomes a challenge to find a characterization technique that is affordable with a low impact on system performance while still providing useful device parameters. For added complexity, this characterization technique must have the ability to scale for implementation in large powerplant applications. This dissertation addresses some of the challenges of outdoor characterization by expanding the knowledge of a well-known indoor technique referred to as Suns-VOC. Suns-VOC provides a pseudo current-voltage curve that is free of any effects from series resistance. Device parameters can be extracted from this pseudo I-V curve, allowing for subsequent degradation analysis. This work introduces how to use Suns-VOC outdoors while normalizing results based on the different effects of environmental conditions. This technique is validated on single-cells, modules, and small arrays with accuracies capable of measuring yearly degradation. An adaptation to Suns-VOC, referred to as Suns-Voltage-Resistor (Suns-VR), is also introduced to complement the results from Suns-VOC. This work can potentially be used to provide a diagnostic tool for outdoor characterization in various applications, including residential, commercial, and industrial PV systems.
Date Created
2022
Agent

Photon Recycling for Efficiency Enhancements for Photonic Power Converters

171784-Thumbnail Image.png
Description
In this work, experimental photonic power converter (PPC) design, fabrication and characterization has been used, along with electrical and optical modeling, to study theoretical efficiency limits of monochromatic photovoltaic (PV) energy conversion due to photon recycling. The back-surface reflectance of

In this work, experimental photonic power converter (PPC) design, fabrication and characterization has been used, along with electrical and optical modeling, to study theoretical efficiency limits of monochromatic photovoltaic (PV) energy conversion due to photon recycling. The back-surface reflectance of a photovoltaic (PV) cell is known to strongly influence external radiative efficiency, a photon recycling metric (ERE), especially when reflectance is close to 100 %. Considering a perfect back reflector, an upper PV cell efficiency limit of 70.9 % and 85 % is calculated for 870.7 nm illumination at an intensity that would generate 32 mA/cm2 (1-sun) and 100 A/cm2 (3125-sun eq) photocurrent, respectively. However, when realistic non-idealities are introduced, ideal efficiency can drop by 21 % for both cases as long as the series resistivity for cells under high intensity illumination is limited to 1 mΩ cm^2. This presents a challenge for photonic energy conversion technology where high intensity lasers are typically used to deliver power to equipment from remote locations. This work discusses ways to provide reflectance enhancement while allowing sufficient current flow at the back surface. One way to do this is to use a planar transparent conductive oxide and reflective metal at the back surface. This work measures and compares the back-surface reflectance of IZO/Ag to standard reflective/conductive materials such as Au and Ag. A comparison between cells with the highest V_OC for cells processed with Au and IZO/Ag as reflective back contacts show that the V_OC for the IZO/Ag cell outperforms that of the Au cell by 6.6 mV measuring V_OC=1.071 V with a cell efficiency of 51.0 % at 780 nm LED illumination. Efficiency calculations extrapolated to other monochromatic light sources identified 841 nm as the optimal wavelength for the IZO/Ag cells with a projected efficiency of η_cell=55.5 % for incident intensity corresponding to 1-sun photocurrent. With the fill factors comparable between the cell types, at least at intensities near 1-sun equivalent photocurrent, the IZO/Ag reflective back contact design demonstrates benefits from photon recycling while not sacrificing voltage drop due to series resistance compared to cells with a standard Au back contact.
Date Created
2022
Agent

Fabrication of Interdigitated Back Contact Cell Towards making Three Terminal Silicon Based Tandem Cell

171589-Thumbnail Image.png
Description
Interdigitated back contact (IBC) solar cells have achieved the highest single junction silicon wafer-based solar cell power conversion efficiencies reported to date. This thesis is about the fabrication of a high-efficiency silicon heterojunction IBC solar cell for potential use as

Interdigitated back contact (IBC) solar cells have achieved the highest single junction silicon wafer-based solar cell power conversion efficiencies reported to date. This thesis is about the fabrication of a high-efficiency silicon heterojunction IBC solar cell for potential use as the bottom cell for a 3-terminal lattice-matched dilute-nitride Ga (In)NP(As)/Si monolithic tandem solar cell. An effective fabrication process has been developed and the process challenges related to open circuit voltage (Voc), series resistance (Rs), and fill factor (FF) are experimentally analyzed. While wet etching, the sample lost the initial passivation, and by changing the etchant solution and passivation process, the voltage at maximum power recovered to an initial value of over 710 mV before metallization. The factors reducing the series resistance loss in IBC cells were also studied. One of these factors was the Indium Tin Oxide (ITO) sputtering parameters, which impact the conductivity of the ITO layer and transport across the a-Si:H/ITO interface. For the standard recipe, the chamber pressure was 3.5 mTorr with no oxygen partial pressure, and the thickness of the ITO layer in contact with the a-Si:H layers, was optimized to 150 nm. The patterning method for the metal contacts and final annealing also change the contact resistance of the base and emitter stack layers. The final annealing step is necessary to recover the sputtering damage; however, the higher the annealing time the higher the final IBC series resistance. The best efficiency achieved was 19.3% (Jsc = 37 mA/cm2, Voc = 691 mV, FF = 71.7%) on 200 µm thick 1-15 Ω-cm n-type CZ C-Si with a designated area of 4 cm2.
Date Created
2022
Agent

Embedded System Design for Reliable Portable Health Diagnostics

171476-Thumbnail Image.png
Description
Portable health diagnostic systems seek to perform medical grade diagnostics in non-ideal environments. This work details a robust fault tolerant portable health diagnostic design implemented in hardware, firmware and software for the detectionof HPV in low-income countries. The device under

Portable health diagnostic systems seek to perform medical grade diagnostics in non-ideal environments. This work details a robust fault tolerant portable health diagnostic design implemented in hardware, firmware and software for the detectionof HPV in low-income countries. The device under device under test (DUT) is a fluorescence based lateral flow assay (LFA) point-of-care (POC) device. This work’s contributions are: firmware and software development, calibration routine implementation, device performance characterization and a proposed method of in-software fault detection. Firmware was refactored from the original implementation of the POC fluorescence reader to expose an application programming interface (API) via USB. Companion software available for desktop environments (Windows, Mac and Linux) was created to interface with this firmware API and conduct macro level routines to request and receive fluorescence data while presenting a user-friendly interface to clinical technicians. Lastly, an environmental chamber was constructed to conduct sequential diagnostic reads in order to observe sensor drift and other deviations that might present themselves in real-world usage. The results from these evaluations show a standard deviation of less than 1% in fluorescence readings in nominal temperature environments (approx. 25C) suggesting that this system will have a favorable signal-to-noise (SNR) ratio in such a setting. In non-ideal over heated environments (≥38C), the evaluation results showed performance degradation with standard deviations as large as 15%.
Date Created
2022
Agent

High Efficiency Monolithic Solar Cell with Reduced Forward Bias Current: Theory, Design and Application

168630-Thumbnail Image.png
Description
As the single-junction silicon solar cell is approaching its theoretical efficiency limits, the loss from shading and resistance is gaining increasing attention. The metal grid pattern may cause an efficiency loss up to 1–3%abs (absolute percentage) depending on the grid’s

As the single-junction silicon solar cell is approaching its theoretical efficiency limits, the loss from shading and resistance is gaining increasing attention. The metal grid pattern may cause an efficiency loss up to 1–3%abs (absolute percentage) depending on the grid’s materials and structure.Many attempts have been proposed to reduce the loss caused by the contacts and module. Among them, the monolithic solar cell, which is a solar cell with multiple string cells on the same wafer and connected in a series, presents advantages of low output current, busbar-free contact, minimized interconnection space, and ohmic loss reduction. However, this structure also introduces a lateral forward bias current through the base region, which severely degrades the cell’s performance. In addition, this interconnection in the base region has partially shunted certain solar cells in the monolithic cell, which created a mismatch between string cells. For the last few decades, researchers have used different methods such as etching trenches or enlarging the distance between the neighboring string cells to solve this problem. However, these methods were both ineffective and defective. In this work, a novel method of suppressing the lateral forward bias current is proposed. By adding a very high surface recombination to the mid-region between the string cells, the carrier density in the mid-region can be decreased close to the doping density. Thus, the resistivity in the mid-region can be increased tenfold or more. As a result, the lateral forward bias current is greatly reduced. Other methods to reduce lateral forward bias current include optimizing the width of the mid-region, shading the mid-region, reducing the base doping and base thickness which can be used to reduce the mismatch as well. Another method has been proposed to calculate the minimum efficiency loss of a monolithic cell compared to the baseline solar cell. As a result, the monolithic cell could potentially gain more advantages over the baseline solar cells with a thinner and low-doped wafer. A monolithic solar cell with innovative designs is presented in this work which shows an efficiency that is potentially higher than that of normal solar cells.
Date Created
2022
Agent

Metallization to Silicon Solar Cells: Improving Optothermal Performance of PERC and Developing New Systems for TOPCon and SHJ

168575-Thumbnail Image.png
Description
Metallization of solar cells is a critical process step in the manufacturing of silicon photovoltaics (PV) as it plays a large role in device performance and production cost. Improvements in device performance linked to metallization and reduction in material usage

Metallization of solar cells is a critical process step in the manufacturing of silicon photovoltaics (PV) as it plays a large role in device performance and production cost. Improvements in device performance linked to metallization and reduction in material usage and processing costs will continue to drive next-generation silicon PV technology. Chapter 1 introduces the context for the contributions of this thesis by providing background information on silicon PV cell technology, solar cell device physics and characterization, and metallization performance for common silicon cell structures. Chapter 2 presents a thermal model that links sub-bandgap reflectance, an important metric at the rear metal interface, to outdoor module operating temperature. Chapter 3 implements this model experimentally with aluminum back-surface field (Al-BSF), passivated emitter and rear contact (PERC), and passivated emitter rear totally diffused (PERT) mini-modules, where the PERT cells were modified to include an optimized sub-bandgap reflector stack. The dedicated optical layer was a porous low-refractive index silica nanoparticle film and was deposited between the dielectric passivation and full area metallization. This created an appreciable boost in sub-bandgap reflectance over the PERC and Al-BSF cells, which directly lead to cooler operating temperature of the fielded module. Chapter 4 investigates low-temperature Ag metallization approaches to SiO2/polysilicon passivating contacts (TOPCon architecture). The low-temperature Ag sintering process does not damage TOPCon passivation for structures with 40-nm-thick poly-Si but shows higher contact resistivity than sputtered references. This disparity is investigated and the impact of Ag diffusion processes, microstructure changes, ambient gases, and interfacial chemical reactions are evaluated. Chapter 5 investigates sputtered Al metallization to silicon heterojunction contacts of both polarities. This In-free and Ag-free metallization process can achieve low contact resistivity and no passivation loss when annealed between 150-180 °C. The passivation degradation at higher temperatures was studied with high-resolution microscopy and elemental mapping, where the interdiffusion processes were identified. Lastly, Chapter 6 summarizes the contribution of this work.
Date Created
2022
Agent

Dilute Nitride Materials for High Efficiency Si-Based Multi-Junction Solar Cells

168529-Thumbnail Image.png
Description
To keep up with the increasing demand for solar energy, higher efficiencies are necessary while keeping cost at a minimum. The easiest theoretical way to achieve that is using silicon-based multi-junction solar cells. However, there are major challenges in effectively

To keep up with the increasing demand for solar energy, higher efficiencies are necessary while keeping cost at a minimum. The easiest theoretical way to achieve that is using silicon-based multi-junction solar cells. However, there are major challenges in effectively implementing such a system. Much work has been done recently to integrate III-V with Si for multi-junction solar cell purposes. The focus of this paper is to explore GaP-based dilute nitrides as a possible top cell candidate for Si-based multi-junctions. The direct growth of dilute nitrides in a lattice-matched configuration epitaxially in literature is reviewed. The problems associated with such growths are outlined and pathways to mitigate these problems are presented. The need for a GaP buffer layer between the dilute nitride film and Si is established. Defects in GaP/Si system are explored in detail and a study on pit formation during such growth is performed. Effective suppression of pits in GaP surface grown on Si is achieved. Issues facing GaP-based dilute nitrides in terms of material properties are outlined. Review of these challenges is done and some possible future areas of interest to improve material quality are established. Finally, the growth process of dilute nitrides using Molecular Beam Epitaxy tool is explained. Results for GaNP grown on Si pre and post growth treatments are detailed.
Date Created
2022
Agent

Simulation, Design, and Application of Micro-Lens Enhanced Multi-Emission Optical Nerve Cuff for Peripheral Nerve Stimulation

168447-Thumbnail Image.png
Description
For two centuries, electrical stimulation has been the conventional method for interfacing with the nervous system. As interfaces with the peripheral nervous system become more refined and higher-resolution, several challenges appear, including immune responses to invasive electrode application, large-to-small axon

For two centuries, electrical stimulation has been the conventional method for interfacing with the nervous system. As interfaces with the peripheral nervous system become more refined and higher-resolution, several challenges appear, including immune responses to invasive electrode application, large-to-small axon recruitment order, and electrode size-dependent spatial selectivity. Optogenetics offers a solution that is less invasive, more tissue-selective, and has small-to-large axon recruitment order. By adding genes to express photosensitive proteins optogenetics provides neuroscientists the ability to genetically select cell populations to stimulate with simple illumination. However, optogenetic stimulation of peripheral nerves uses diffuse light to activate the photosensitive neural cell lines. To increase the specificity of stimulus response, research was conducted to test the hypothesis that multiple, focused light emissions placed around the circumference of optogenetic mouse sciatic nerve could be driven to produce differential responses in hindlimb motor movement depending on the pattern of light presented. A Monte Carlo computer simulation was created to model the number of emitters, the light emission size, and the focal power of accompanying micro-lenses to provide targeted stimulation to select regions within the sciatic nerve. The computer simulation results were used to parameterize the design of micro-lenses. By modeling multiple focused beams, only fascicles within a nerve diameter less than 1 mm are expected to be fully accessible to focused optical stimulation; a minimum of 4 light sources is required to generate a photon intensity at a point in a nerve over the initial contact along its surface. To elicit the same effect in larger nerves, focusing lenses would require a numerical aperture > 1. Microlenses which met the simulation requirements were fabricated and deployed on a flexible nerve cuff which was used to stimulate the sciatic nerve in optogenetic mice. Motor neuron responses from this stimulation were compared to global illumination; stimulation using the optical cuff resulted in fine motor movement of the extensor muscles of the digits in the hindlimb. Increasing optical power resulted in a shift to gross motor movement of hindlimb. Finally, varying illumination intensity across the cuff showed changes in the extension of individual digits.
Date Created
2021
Agent

Light-Induced Al Plating on Si for Fabrication of an Ag-Free All Al Solar Cell

168295-Thumbnail Image.png
Description
A general review of film growth with various mechanisms is given. Additives and their potential effects on film properties are also discussed. Experimental light-induced aluminum (Al) plating tool design is discussed. Light-induced electroplating of Al as the front electrode on

A general review of film growth with various mechanisms is given. Additives and their potential effects on film properties are also discussed. Experimental light-induced aluminum (Al) plating tool design is discussed. Light-induced electroplating of Al as the front electrode on the n-type emitter of silicon (Si) solar cells is proposed as a substitute for screen-printed Silver (Ag). The advantages and disadvantages of Al over copper (Cu) as a suitable Ag replacement are examined. Optimization of the power given to a green laser for silicon nitride (SiNx) anitreflection coating patterning is performed. Laser damage and contamination removal conditions on post-patterned cell surfaces are identified. Plating and post-annealing temperature effects on Al morphology and film resistivity are explored. Morphology and resistivity improvement of the Al film are also investigated through several plating additives. The lowest resistivity of 3.1 µΩ-cm is given by nicotinic acid. Laser induced damage to the cell emitter experimentally limits the contact resistivity between light-induced Al and Si to approximately 69 mΩ-cm2. Phosphorus pentachloride (PCl5) is introduced into the plating bath and improved the the contact resistivity between light induced Al and Si to a range of 0.1-1 mΩ-cm2. Secondary ion mass spectroscopy (SIMS) was performed on a film deposited with PCl5 and showed a phosphorus peak, indicating emitter phosphorus concentration may be the reason for the low contact resistivity between light-induced Al and Si. SEM also shows that PCl5 improves Al film density and plating throwing power. Post plating annealing performed at a temperature of 500°C allows Al to spike through the thin n-type emitter causing cell failure. Atmospheric moisture causes poor process reproducibility.
Date Created
2021
Agent

The Study of the Fabrication Process for Surface Nanotexturing With Modification of Al2O3 Passivation

161954-Thumbnail Image.png
Description
In this dissertation, the nanofabrication process is characterized for fabrication of nanostructure on surface of silicon and gallium phosphide using silica nanosphere lithography (SNL) and metal assisted chemical etching (MACE) process. The SNL process allows fast process time and well

In this dissertation, the nanofabrication process is characterized for fabrication of nanostructure on surface of silicon and gallium phosphide using silica nanosphere lithography (SNL) and metal assisted chemical etching (MACE) process. The SNL process allows fast process time and well defined silica nanosphere monolayer by spin-coating process after mixing N,N-dimethyl-formamide (DMF) solvent. The MACE process achieves the high aspect ratio structure fabrication using the reaction between metal and wet chemical. The nanostructures are fabricated on Si surface for enhanced light management, but, without proper surface passivation those gains hardly impact the performance of the solar cell. The surface passivation of nanostructures is challenging, not only due to larger surface areas and aspect ratios, but also has a direct result of the nanofabrication processes. In this research, the surface passivation of silicon nanostructures is improved by modifying the silica nanosphere lithography (SNL) and the metal assisted chemical etching (MACE) processes, frequently used to fabricate nanostructures. The implementation of a protective silicon oxide layer is proposed prior to the lithography process to mitigate the impact of the plasma etching during the SNL. Additionally, several adhesion layers are studied, chromium (Cr), nickel (Ni) and titanium (Ti) with gold (Au), used in the MACE process. The metal contamination is one of main damage and Ti makes the mitigation of metal contamination. Finally, a new chemical etching step is introduced, using potassium hydroxide at room temperature, to smooth the surface of the nanostructures after the MACE process. This chemical treatment allows to improve passivation by surface area control and removing surface defects. In this research, I demonstrate the Aluminum Oxide (Al2O3) passivation on nanostructure using atomic layer deposition (ALD) process. 10nm of Al2O3 layer makes effective passivation on nanostructure with optimized post annealing in forming gas (N2/H2) environment. However, 10nm thickness is not suitable for hetero structure because of carrier transportation. For carrier transportation, ultrathin Al2O3 (≤ 1nm) layer is used for passivation, but effective passivation is not achieved because of insufficient hydrogen contents. This issue is solved to use additional ultrathin SiO2 (1nm) below Al2O3 layer and hydrogenation from doped a-Si:H. Moreover, the nanostructure is creased on gallium phosphide (GaP) by SNL and MACE process. The fabrication process is modified by control of metal layer and MACE solution.
Date Created
2021
Agent