Diffuse pleural mesothelioma (DPM) is a devastating lung cancer most commonly diagnosed at an advanced stage with a poor prognosis for patients. Therapies available to patients after diagnosis currently include surgical resection, radiotherapy, immunotherapy, and chemotherapy. However, these therapies only…
Diffuse pleural mesothelioma (DPM) is a devastating lung cancer most commonly diagnosed at an advanced stage with a poor prognosis for patients. Therapies available to patients after diagnosis currently include surgical resection, radiotherapy, immunotherapy, and chemotherapy. However, these therapies only prolong life for about a year and a half on average. DPM patients desperately need effective therapies in the form of drugs, drug combinations, and miRNA-based therapies, that could lengthen overall survival and provide a better quality of life. I hypothesized that focusing on DPM tumor biology would streamline the process for discovering new therapies that will have a lasting impact for patients. I have applied systems biology methods to mine multiomic data from patient DPM tumors to discover new therapeutic options. I began by developing a somatic mutation integration pipeline, which created a comprehensive somatic mutational profile of DPM tumors from patient genomic and transcriptomic data. The somatic mutational profile was used in the generation of dpmSYGNAL, a disease-relevant gene regulatory network (GRN) trained on patient tumor multiomic data. I integrated this GRN with functional genomics screens performed on two low-passage primary DPM tumor cell lines and identified gene vulnerabilities that could be targeted by FDA-approved inhibitors and drug combinations. I also developed a pipeline to integrate miRNA target genes from biotinylated pulldowns with RNA-seq data from a study re-expressing the miRNA hsa-miR-497-5p in DPM cell lines. I determined that the re-expression of hsa-miR-497-5p had early pro-apoptotic effects and inhibited the cell cycle at later time points. The identification of inhibitors, combinations of inhibitors, and a therapeutic miRNA demonstrates that DPM biology can be used as a guide to discover new therapeutics for DPM.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Though researchers are working to correct it, a disparity exists in the knowledge of and treatment for cardiovascular disease, hypertension, and type II diabetes among the sexes. A disparity likewise arises in our understanding of the impact of sex hormones…
Though researchers are working to correct it, a disparity exists in the knowledge of and treatment for cardiovascular disease, hypertension, and type II diabetes among the sexes. A disparity likewise arises in our understanding of the impact of sex hormones on disease between the sexes. This review article aims to explain the state of our knowledge on the impact of sex hormones on disease across the lifespan based on research published from 2018-2024.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
It is well documented that menopause and the related decline in circulatory steroid hormones estrogen and progesterone are associated with memory alterations. Rodent models of surgical menopause can be used to study these effects, including ovariectomy (Ovx), or the surgical…
It is well documented that menopause and the related decline in circulatory steroid hormones estrogen and progesterone are associated with memory alterations. Rodent models of surgical menopause can be used to study these effects, including ovariectomy (Ovx), or the surgical removal of the ovaries. This thesis aimed to characterize the effects of surgical menopause on spatial working and reference memory in rats and examine profiles of uterine gene expression alterations that may serve as indications of mechanisms underlying this association. Eighteen female rats were randomly assigned to one of two surgical treatment groups, either Ovx (the surgical menopause group) or sham (the control group). All subjects underwent testing on the water version of the radial arm maze (WRAM) which allows for the assessment of reference memory errors and two types of working memory errors. After behavioral testing, rat uterine tissues were dissected and RNA sequenced. The results showed that Ovx impaired spatial reference memory performance during a maze learning phase, with Ovx rats making reference memory failures earlier in the day, even before working memory load increased, as compared to control rats. There were no surgical menopause effects on spatial working memory, which may be due to the low working memory load and the young age of the rats. Post-hoc analyses showed that reference memory performance was correlated with nerve growth factor (NGF) and acetylcholinesterase (AChE) gene expression in uterine tissues. These findings add to the literature on the impact of estrogen and female cyclicity on memory and cognition. The results suggest that Ovx impairment of the ability to learn long-term spatial memory information relates to uterine gene expression underlying cellular functioning and that NGF and AChE genes are involved in pathways that give way to underlying cellular functioning that impacts cognition. Future studies should continue to evaluate the effects of menopause on memory function and the effectiveness of hormone therapy.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Mutation is the source of heritable variation of genotype and phenotype, on which selection may act. Mutation rates describe a fundamental parameter of living things, which influence the rate at which evolution may occur, from viral pathogens to human crops…
Mutation is the source of heritable variation of genotype and phenotype, on which selection may act. Mutation rates describe a fundamental parameter of living things, which influence the rate at which evolution may occur, from viral pathogens to human crops and even to aging cells and the emergence of cancer. An understanding of the variables which impact mutation rates and their estimation is necessary to place mutation rate estimates in their proper contexts. To better understand mutation rate estimates, this research investigates the impact of temperature upon transcription rate error estimates; the impact of growing cells in liquid culture vs. on agar plates; the impact of many in vitro variables upon the estimation of deoxyribonucleic acid (DNA) mutation rates from a single sample; and the mutational hazard induced by expressing clustered regularly interspaced short palindromic repeat (CRISPR) proteins in yeast. This research finds that many of the variables tested did not significantly alter the estimation of mutation rates, strengthening the claims of previous mutation rate estimates across the tree of life by diverse experimental approaches. However, it is clear that sonication is a mutagen of DNA, part of an effort which has reduced the sequencing error rate of circle-seq by over 1,000-fold. This research also demonstrates that growth in liquid culture modestly skews the mutation spectrum of MMR- Escherichia coli, though it does not significantly impact the overall mutation rate. Finally, this research demonstrates a modest mutational hazard of expressing Cas9 and similar CRISPR proteins in yeast cells at an un-targeted genomic locus, though it is possible the indel rate has been increased by an order of magnitude.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Mycobacterium leprae, the causative agent of Hansen’s disease (leprosy), has plagued humans and other animal species for millennia and remains of concern to public health throughout the world today. Recent research into the expanded use of medical tissues preserved as…
Mycobacterium leprae, the causative agent of Hansen’s disease (leprosy), has plagued humans and other animal species for millennia and remains of concern to public health throughout the world today. Recent research into the expanded use of medical tissues preserved as formalin-fixed, paraffin-embedded samples (FFPE), opened the door for the study of M. leprae DNA from preserved skin samples. However, problems persist with damage to the DNA including fragmentation and cross linkage. This study evaluated two methods commonly used for the recovery of host DNA from FFPE samples for their efficacy in extracting pathogen DNA (hot alkaline lysis protocol and QIAGEN QIAamp FFPE DNA kit). Twenty FFPE skin samples collected from 1995-2015 from human subjects in the Pacific Islands suffering from M. leprae infection, each exhibiting a range of bacillary loads, were analyzed to determine which extraction method was most successful in terms of ability to consistently yield reliable, robust traces of M. leprae infection. This study further examined these samples to understand the phylogeny of leprosy in the region, where gaps in the evolutionary history of M. leprae persist. DNA recovery from paired samples was similar using either method. However, by extending the incubation time of post-paraffin removal sample lysis, both protocols were more likely to yield positive traces of M. leprae, with this enhancement being especially evident in paucibacillary samples with low bacterial presence. The qPCR assay findings suggest that the hot alkaline procedure is most likely to yield positive identification of infection in these traditionally challenging samples.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Life history theory offers a powerful framework to understand evolutionary selection pressures and explain how adaptive strategies use the life history trade-off and differences in cancer defenses across the tree of life. There is often some cost to the phenotype…
Life history theory offers a powerful framework to understand evolutionary selection pressures and explain how adaptive strategies use the life history trade-off and differences in cancer defenses across the tree of life. There is often some cost to the phenotype of therapeutic resistance and so sensitive cells can usually outcompete resistant cells in the absence of therapy. Adaptive therapy, as an evolutionary and ecologically inspired paradigm in cancer treatment, uses the competitive interactions between drug-sensitive, and drug-resistant subclones to help suppress the drug-resistant subclones. However, there remain several open challenges in designing adaptive therapies, particularly in extending this approach to multiple drugs. Furthermore, the immune system also plays a role in preventing and controlling cancers. Life history theory may help to explain the variation in immune cell levels across the tree of life that likely contributes to variance in cancer prevalence across vertebrates. However, this has not been previously explored. This work 1) describes resistance management for cancer, lessons cancer researchers learned from farmers since adaptive evolutionary strategies were inspired by the management of resistance in agricultural pests, 2) demonstrates how adaptive therapy protocols work with gemcitabine and capecitabine in a hormone-refractory breast cancer mouse model, 3) tests for a relationship between life history strategy and the immune system, and tests for an effect of immune cells levels on cancer prevalence across vertebrates, and 4) provides a novel approach to improve the teaching of life history theory. This work applies lessons that cancer researchers learned from pest managers, who face similar issues of pesticide resistance, to control cancers. It represents the first time that multiple drugs have been used in adaptive therapy for cancer, and the first time that adaptive therapy has been used on hormone-refractory breast cancer. I found that this evolutionary approach to cancer treatment prolongs survival in mice and also selects for the slow life history strategy. I also discovered that species with slower life histories have higher concentrations of white blood cells and a higher percentage of heterophils, monocytes and segmented neutrophils. Moreover, larger platelet size is associated with higher cancer prevalence in mammals.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease (ILD) that results in the permanent scarring and damage of lung tissue. Currently, there is no known cause or viable treatment for this disease, and the majority of patients either receive…
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease (ILD) that results in the permanent scarring and damage of lung tissue. Currently, there is no known cause or viable treatment for this disease, and the majority of patients either receive a lung transplant or succumb to the disease within five years of diagnosis. This project centers around studying IPF through analyzing gene expression patterns in healthy vs. diseased lung tissue via spatial transcriptomics. Spatial transcriptomics is the study of individual RNA transcripts within cells on a spatial level. With the novel technology MERFISH, we can detect gene expression in a spatial context with single-cell resolution, allowing us to make inferences about certain patterns of gene expression that are solely driven by the pathology of the disease. A total of 120 cells were selected from 21 different lung samples - 6 healthy; 15 ILD. Within those lung samples, selected from 4 different tissue features - control, less fibrotic, more fibrotic, and cystic. We built an analysis pipeline in R to analyze cell type composition around these features at different distances from the center cell (0-75, 76-150, and 150-225 μm). Cell types were annotated at both a broad (less specific) and fine (more specific) level. Upon analyzing the relationship between the proportions of various cell types and distance from tissue features, we found that within the broad cell type annotation level, airway epithelium cells had a negative relationship with distance and were statistically significant through linear regression models. Within the fine cell type annotation level, ciliated/secretory cells displayed this same trend. The results above support our current understanding of cystic tissue in lung tissue, and is a foundation for understanding disease pathology as a whole.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Hepatocellular Carcinoma (HCC) is one of the main types of liver cancer accounting for 75% of cases and is the second deadliest cancer worldwide. Chronic Hepatitis B (HBV) and Hepatitis C (HCV) remain one of the most important global risk…
Hepatocellular Carcinoma (HCC) is one of the main types of liver cancer accounting for 75% of cases and is the second deadliest cancer worldwide. Chronic Hepatitis B (HBV) and Hepatitis C (HCV) remain one of the most important global risk factors and account for 80% of all HCC cases. HCC also exhibits sex-differences with significantly higher incidence and worse prognosis in males. The mechanistic basis of these sex-differences is poorly understood. To identify genes and pathways that are sex-differentially expressed in viral-mediated HCC, we performed differential expression analysis on tumor vs. tumor adjacent samples that were stratified based on sex, viral etiology, and both. The differentially expressed genes were then used in a pathway enrichment analysis to identify potential pathways of interest. We found differentially expressed genes in both sexes and both etiologies. 65 genes were unique to females and 184 genes unique to males. 381 genes are unique to HBV and 195 genes are unique to HCV. We also found pathways that were significantly enriched by the differentially expressed genes. Ten pathways unique to the female tumor tumor-adjacent comparison and a majority of those pathways were a part of the cell cycle. Four enriched pathways unique to male tumor tumor-adjacent and three of them were a part of the immune system. There were no pathways unique to either etiology, but seven pathways shared by both etiologies. Two were a part of the cell cycle and one involved lipid metabolism. These differentially expressed genes and significant pathways are potential targets for individualized therapeutics and diagnostics for HCC.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)