Development of Pervaporation Membranes and Integration Into System Design for Space Flight Wastewater Management

189407-Thumbnail Image.png
Description
Pervaporation is a membrane process suited to complex and highly contaminated wastewaters. Pervaporation desalination is an emerging area of study where the development of high-performance membranes is necessary to propel the field forward. This research demonstrated that sulfonated block polymer

Pervaporation is a membrane process suited to complex and highly contaminated wastewaters. Pervaporation desalination is an emerging area of study where the development of high-performance membranes is necessary to propel the field forward. This research demonstrated that sulfonated block polymer membranes (Nexar™)show excellent permeance (water passage normalized by driving force) of as much as 135.5 ± 29 kg m-2 hr-1 bar-1, with salt removal values consistently equal to or greater than 99.5%. Another challenging water management scenario is in spaceflight situations, such as on the International Space Station (ISS). Spaceflight wastewaters are highly complex, with low pH values, and high levels of contaminants. Current processes produce 70% wastewater recovery, necessitating the handling and processing of concentrated brines. Since recoveries of 85% are desired moving forward, further efforts in water recovery are desirable. An area of concern in these ISS water treatment systems is scalant deposition, especially of divalent ions such as calcium species. Zwitterions are molecules with localized positive and negative charges, but an overall neutral charge. Zwitterions have been used to modify the surface of membranes have shown to decrease fouling. Building a copolymer between zwitterions and other polymers, creates zwitterion layer on top of previously studied Nexar™ membranes. This coating demonstrates great promise to combat scaling, as it increases the hydrophilicity of the membrane surface measured via contact angle. The zwitterion membranes experienced reduced scaling, with the greatest difference being between 1617 ± 241 wt% on control membranes, to 317 ± 87 wt% on zwitterion coated membranes in the presence of CaCl2. In treating spaceflight wastewater, these zwitterion membranes are effective at retaining the acid in the feed, going from a pH value of 2 to 7 and reducing the contamination level of the feed, with a removal value of 99.3 ± 0.4%, measured through conductivity. These membranes also perform well in separation processes that do not require extreme vacuum and can be operated passively. By optimizing both membrane material properties and process conditions, achieving increased high levels of water recovery from spaceflight wastewaters is attainable.
Date Created
2023
Agent

Evaluating the Efficiency of a Cold Trap Condenser

131038-Thumbnail Image.png
Description
Water scarcity is still an issue across the globe, so nonconventional desalination methods need to be developed to be able to get access to clean, safe water. One such method being studied is the pervaporation system, a membrane process that

Water scarcity is still an issue across the globe, so nonconventional desalination methods need to be developed to be able to get access to clean, safe water. One such method being studied is the pervaporation system, a membrane process that uses a vapor pressure differential to drive the system. There is a need to find the efficiency of the cold trap condenser that is used to collect the permeate so that a thermodynamic model can be fully developed to assist in the development of an industrial scale pervaporation system. An efficiency was not able to be confidently found, but it is believe to be between 95-100%.
Date Created
2020-12
Agent

A Review of Sustainable Water Practices and using Membrane Bioreactors to treat Hospital Wastewater

131939-Thumbnail Image.png
Description
Hospital wastewater usually contains high concentrations of pharmaceuticals and other hazardous materials, depending on how waste is disposed of in a hospital. This poses potential health concerns for both the surrounding ecosystem and the contamination of drinking water. Membrane bioreactors

Hospital wastewater usually contains high concentrations of pharmaceuticals and other hazardous materials, depending on how waste is disposed of in a hospital. This poses potential health concerns for both the surrounding ecosystem and the contamination of drinking water. Membrane bioreactors (MBRs) are at the forefront of treating hospital wastewater due to their efficiency in dealing with high concentrations of pharmaceuticals and the relatively small size of the MBR system. Although MBRs are typically the best method of dealing with pharmaceutical-containing wastewater, an MBR is just one of many methods for treating wastewater. Engineers should be consulted to determine which water treatment systems are best for a hospital, depending on the total water usage, required size of the system, and the duration of operation for the system. Sustainable water practices can be implemented in hospitals to reduce the cost and consumption of water. Treating and reusing hospital wastewater with membrane bioreactors significantly reduces the concentration of pharmaceuticals, making hospital wastewater reusable in various parts of a hospital, which lowers the consumption of water. Furthermore, other practices can be used to minimize costs for both MBRs and total water usage within a hospital.
Date Created
2020-05
Agent