3D printed glucose monitoring sensor

155565-Thumbnail Image.png
Description
The American Diabetes Association reports that diabetes costs $322 billion annually and affects 29.1 million Americans. The high out-of-pocket cost of managing diabetes can lead to noncompliance causing serious and expensive complications. There is a large market potential for a

The American Diabetes Association reports that diabetes costs $322 billion annually and affects 29.1 million Americans. The high out-of-pocket cost of managing diabetes can lead to noncompliance causing serious and expensive complications. There is a large market potential for a more cost-effective alternative to the current market standard of screen-printed self-monitoring blood glucose (SMBG) strips. Additive manufacturing, specifically 3D printing, is a developing field that is growing in popularity and functionality. 3D printers are now being used in a variety of applications from consumer goods to medical devices. Healthcare delivery will change as the availability of 3D printers expands into patient homes, which will create alternative and more cost-effective methods of monitoring and managing diseases, such as diabetes. 3D printing technology could transform this expensive industry. A 3D printed sensor was designed to have similar dimensions and features to the SMBG strips to comply with current manufacturing standards. To make the sensor electrically active, various conductive filaments were tested and the conductive graphene filament was determined to be the best material for the sensor. Experiments were conducted to determine the optimal print settings for printing this filament onto a mylar substrate, the industry standard. The reagents used include a mixture of a ferricyanide redox mediator and flavin adenine dinucleotide dependent glucose dehydrogenase. With these materials, each sensor only costs $0.40 to print and use. Before testing the 3D printed sensor, a suitable design, voltage range, and redox probe concentration were determined. Experiments demonstrated that this novel 3D printed sensor can accurately correlate current output to glucose concentration. It was verified that the sensor can accurately detect glucose levels from 25 mg/dL to 400 mg/dL, with an R2 correlation value as high as 0.97, which was critical as it covered hypoglycemic to hyperglycemic levels. This demonstrated that a 3D-printed sensor was created that had characteristics that are suitable for clinical use. This will allow diabetics to print their own test strips at home at a much lower cost compared to SMBG strips, which will reduce noncompliance due to the high cost of testing. In the future, this technology could be applied to additional biomarkers to measure and monitor other diseases.
Date Created
2017
Agent

Characterization of the effects of cerebral aneurysm geometry on hemodynamics and endovascular treatment outcomes

154534-Thumbnail Image.png
Description
Cerebral aneurysms are pathological balloonings of blood vessels in the brain, commonly found in the arterial network at the base of the brain. Cerebral aneurysm rupture can lead to a dangerous medical condition, subarachnoid hemorrhage, that is associated with high

Cerebral aneurysms are pathological balloonings of blood vessels in the brain, commonly found in the arterial network at the base of the brain. Cerebral aneurysm rupture can lead to a dangerous medical condition, subarachnoid hemorrhage, that is associated with high rates of morbidity and mortality. Effective evaluation and management of cerebral aneurysms is therefore essential to public health. The goal of treating an aneurysm is to isolate the aneurysm from its surrounding circulation, thereby preventing further growth and rupture. Endovascular treatment for cerebral aneurysms has gained popularity over traditional surgical techniques due to its minimally invasive nature and shorter associated recovery time. The hemodynamic modifications that the treatment effects can promote thrombus formation within the aneurysm leading to eventual isolation. However, different treatment devices can effect very different hemodynamic outcomes in aneurysms with different geometries.

Currently, cerebral aneurysm risk evaluation and treatment planning in clinical practice is largely based on geometric features of the aneurysm including the dome size, dome-to-neck ratio, and parent vessel geometry. Hemodynamics, on the other hand, although known to be deeply involved in cerebral aneurysm initiation and progression, are considered to a lesser degree. Previous work in the field of biofluid mechanics has demonstrated that geometry is a driving factor behind aneurysmal hemodynamics.

The goal of this research is to develop a more combined geometric/hemodynamic basis for informing clinical decisions. Geometric main effects were analyzed to quantify contributions made by geometric factors that describe cerebral aneurysms (i.e., dome size, dome-to-neck ratio, and inflow angle) to clinically relevant hemodynamic responses (i.e., wall shear stress, root mean square velocity magnitude and cross-neck flow). Computational templates of idealized bifurcation and sidewall aneurysms were created to satisfy a two-level full factorial design, and examined using computational fluid dynamics. A subset of the computational bifurcation templates was also translated into physical models for experimental validation using particle image velocimetry. The effects of geometry on treatment were analyzed by virtually treating the aneurysm templates with endovascular devices. The statistical relationships between geometry, treatment, and flow that emerged have the potential to play a valuable role in clinical practice.
Date Created
2016
Agent

Improved techniques for cardiovascular flow experiments

154254-Thumbnail Image.png
Description
Aortic pathologies such as coarctation, dissection, and aneurysm represent a

particularly emergent class of cardiovascular diseases and account for significant cardiovascular morbidity and mortality worldwide. Computational simulations of aortic flows are growing increasingly important as tools for gaining understanding of these

Aortic pathologies such as coarctation, dissection, and aneurysm represent a

particularly emergent class of cardiovascular diseases and account for significant cardiovascular morbidity and mortality worldwide. Computational simulations of aortic flows are growing increasingly important as tools for gaining understanding of these pathologies and for planning their surgical repair. In vitro experiments are required to validate these simulations against real world data, and a pulsatile flow pump system can provide physiologic flow conditions characteristic of the aorta.

This dissertation presents improved experimental techniques for in vitro aortic blood flow and the increasingly larger parts of the human cardiovascular system. Specifically, this work develops new flow management and measurement techniques for cardiovascular flow experiments with the aim to improve clinical evaluation and treatment planning of aortic diseases.

The hypothesis of this research is that transient flow driven by a step change in volume flux in a piston-based pulsatile flow pump system behaves differently from transient flow driven by a step change in pressure gradient, the development time being substantially reduced in the former. Due to this difference in behavior, the response to a piston-driven pump can be predicted in order to establish inlet velocity and flow waveforms at a downstream phantom model.

The main objectives of this dissertation were: 1) to design, construct, and validate a piston-based flow pump system for aortic flow experiments, 2) to characterize temporal and spatial development of start-up flows driven by a piston pump that produces a step change from zero flow to a constant volume flux in realistic (finite) tube geometries for physiologic Reynolds numbers, and 3) to develop a method to predict downstream velocity and flow waveforms at the inlet of an aortic phantom model and determine the input waveform needed to achieve the intended waveform at the test section. Application of these newly improved flow management tools and measurement techniques were then demonstrated through in vitro experiments in patient-specific coarctation of aorta flow phantom models manufactured in-house and compared to computational simulations to inform and execute future experiments and simulations.
Date Created
2015
Agent

Three dimensional printing and computational visualization for surgical planning and medical education

153581-Thumbnail Image.png
Description
The advent of medical imaging has enabled significant advances in pre-procedural planning, allowing cardiovascular anatomy to be visualized noninvasively before a procedure. However, absolute scale and tactile information are not conveyed in traditional pre-procedural planning based on images alone. This

The advent of medical imaging has enabled significant advances in pre-procedural planning, allowing cardiovascular anatomy to be visualized noninvasively before a procedure. However, absolute scale and tactile information are not conveyed in traditional pre-procedural planning based on images alone. This information deficit fails to completely prepare clinicians for complex heart repair, where surgeons must consider the varied presentations of cardiac morphology and malformations. Three-dimensional (3D) visualization and 3D printing provide a mechanism to construct patient-specific, scale models of cardiovascular anatomy that surgeons and interventionalists can examine prior to a procedure. In addition, the same patient-specific models provide a valuable resource for educating future medical professionals. Instead of looking at idealized images on a computer screen or pages from medical textbooks, medical students can review a life-like model of patient anatomy.



In cases where surgical repair is insufficient to return the heart to normal function, a patient may proceed to advanced heart failure, and a heart transplant may be required. Unfortunately, a finite number of available donor hearts are available. A mechanical circulatory support (MCS) device can be used to bridge the time between heart failure and reception of a donor heart. These MCS devices are typically constructed for the adult population. Accordingly, the size associated to the device is a limiting factor for small adults or pediatric patients who often have smaller thoracic measurements. While current eligibility criteria are based on correlative measurements, the aforementioned 3D visualization capabilities can be leveraged to accomplish patient-specific fit analysis.

The main objectives of the work presented in this dissertation were 1) to develop and evaluate an optimized process for 3D printing cardiovascular anatomy for surgical planning and medical education and 2) to develop and evaluate computational tools to assess MCS device fit in specific patients. The evaluations for objectives 1 and 2 were completed with a collection of qualitative and quantitative validations. These validations include case studies to illustrate meaningful, qualitative results as well as quantitative results from surgical outcomes. The latter results present the first quantitative supporting evidence, beyond anecdotal case studies, regarding the efficacy of 3D printing for pre-procedural planning; this data is suitable as pilot data for clinical trials. The products of this work were used to plan 200 cardiovascular procedures (including 79 cardiothoracic surgeries at Phoenix Children's Hospital), via 3D printed heart models and assess MCS device fit in 29 patients across 6 countries.
Date Created
2015
Agent

Development of an ECM-mimetic, electrospun hydrogel scaffold for soft tissue repair application

152914-Thumbnail Image.png
Description
The objective of this research is to develop a biocompatible scaffold based on dextran and poly acrylic acid (PAA) with the potential to be used for soft tissue repair. In this thesis, physical and chemical properties of the scaffold were

The objective of this research is to develop a biocompatible scaffold based on dextran and poly acrylic acid (PAA) with the potential to be used for soft tissue repair. In this thesis, physical and chemical properties of the scaffold were investigated. The scaffolds were made using electrospinning and cross-linked under high temperature. After heat treatment, Scanning Electron Microscope (SEM) was used to observe the structures of these scaffolds. Fourier transform infrared spectroscopy (FTIR) was used to measure the cross-linking level of scaffold samples given different times of heat treatment by detecting and comparing the newly formed ester bonds. Single-walled carbon nanotubes (SWCNT) were added to enhance the mechanical properties of dextran-PAA scaffolds. Attachment of NIH-3T3 fibroblast cells to the scaffold and the response upon implantation into rabbit vaginal tissue were also evaluated to investigate the performance of SWCNT dextran-PAA scaffold. SEM was then used to characterize morphology of fibroblast cells and rabbit tissues. The results suggest that SWCNT could enhance cell attachment, distribution and spreading performance of dextran-PAA scaffold.
Date Created
2014
Agent

Feasibility of investigating mineralization processes under simulated microgravity free convectionless conditions in unit gravity environment with implication on bone mineral density

152131-Thumbnail Image.png
Description
The overall goal of this research project was to assess the feasibility of investigating the effects of microgravity on mineralization systems in unit gravity environments. If possible to perform these studies in unit gravity earth environments, such as earth, such

The overall goal of this research project was to assess the feasibility of investigating the effects of microgravity on mineralization systems in unit gravity environments. If possible to perform these studies in unit gravity earth environments, such as earth, such systems can offer markedly less costly and more concerted research efforts to study these vitally important systems. Expected outcomes from easily accessible test environments and more tractable studies include the development of more advanced and adaptive material systems, including biological systems, particularly as humans ponder human exploration in deep space. The specific focus of the research was the design and development of a prototypical experimental test system that could preliminarily meet the challenging design specifications required of such test systems. Guided by a more unified theoretical foundation and building upon concept design and development heuristics, assessment of the feasibility of two experimental test systems was explored. Test System I was a rotating wall reactor experimental system that closely followed the specifications of a similar test system, Synthecon, designed by NASA contractors and thus closely mimicked microgravity conditions of the space shuttle and station. The latter includes terminal velocity conditions experienced by both innate material systems, as well as, biological systems, including living tissue and humans but has the ability to extend to include those material test systems associated with mineralization processes. Test System II is comprised of a unique vertical column design that offered more easily controlled fluid mechanical test conditions over a much wider flow regime that was necessary to achieving terminal velocities under free convection-less conditions that are important in mineralization processes. Preliminary results indicate that Test System II offers distinct advantages in studying microgravity effects in test systems operating in unit gravity environments and particularly when investigating mineralization and related processes. Verification of the Test System II was performed on validating microgravity effects on calcite mineralization processes reported earlier others. There studies were conducted on calcite mineralization in fixed-wing, reduced gravity aircraft, known as the `vomit comet' where reduced gravity conditions are include for very short (~20second) time periods. Preliminary results indicate that test systems, such as test system II, can be devised to assess microgravity conditions in unit gravity environments, such as earth. Furthermore, the preliminary data obtained on calcite formation suggest that strictly physicochemical mechanisms may be the dominant factors that control adaptation in materials processes, a theory first proposed by Liu et al. Thus the result of this study may also help shine a light on the problem of early osteoporosis in astronauts and long term interest in deep space exploration.
Date Created
2013
Agent

Optimization of design factors for electrospun scaffolds for regenerative medicine

152129-Thumbnail Image.png
Description
The objective of this research is to investigate the relationship among key process design variables associated with the development of nanoscale electrospun polymeric scaffolds capable of tissue regeneration. To date, there has been no systematic approach toward understanding electrospinning process

The objective of this research is to investigate the relationship among key process design variables associated with the development of nanoscale electrospun polymeric scaffolds capable of tissue regeneration. To date, there has been no systematic approach toward understanding electrospinning process parameters responsible for the production of 3-D nanoscaffold architectures with desired levels quality assurance envisioned to satisfy emerging regenerative medicine market needs. , As such, this study encompassed a more systematic, rational design of experiment (DOE) approach toward the identification of electrospinning process conditions responsible for the production of dextran-polyacrylic acid (DEX-PAA) nanoscaffolds with desired architectures and tissue engineering properties. The latter includes scaffold fiber diameter, pore size, porosity, and degree of crosslinking that together can provide a range of scaffold nanomechanical properties that closely mimics the cell microenvironment. The results obtained from this preliminary DOE study indicate that there exist electrospinning operation conditions capable of producing Dex-PAA nanoarchitecture having potential utility for regenerative medicine applications.
Date Created
2013
Agent

A statistical clinical decision support tool for determining thresholds in remote monitoring using predictive analytics

151757-Thumbnail Image.png
Description
Statistical process control (SPC) and predictive analytics have been used in industrial manufacturing and design, but up until now have not been applied to threshold data of vital sign monitoring in remote care settings. In this study of 20 elders

Statistical process control (SPC) and predictive analytics have been used in industrial manufacturing and design, but up until now have not been applied to threshold data of vital sign monitoring in remote care settings. In this study of 20 elders with COPD and/or CHF, extended months of peak flow monitoring (FEV1) using telemedicine are examined to determine when an earlier or later clinical intervention may have been advised. This study demonstrated that SPC may bring less than a 2.0% increase in clinician workload while providing more robust statistically-derived thresholds than clinician-derived thresholds. Using a random K-fold model, FEV1 output was predictably validated to .80 Generalized R-square, demonstrating the adequate learning of a threshold classifier. Disease severity also impacted the model. Forecasting future FEV1 data points is possible with a complex ARIMA (45, 0, 49), but variation and sources of error require tight control. Validation was above average and encouraging for clinician acceptance. These statistical algorithms provide for the patient's own data to drive reduction in variability and, potentially increase clinician efficiency, improve patient outcome, and cost burden to the health care ecosystem.
Date Created
2013
Agent

Gait analysis of multiple sclerosis patients

151130-Thumbnail Image.png
Description
Multiple Sclerosis, an autoimmune disease, is one of the most common neurological disorder in which demyelinating of the axon occurs. The main symptoms of MS disease are fatigue, vision problems, stability issue, balance problems. Unfortunately, currently available treatments for this

Multiple Sclerosis, an autoimmune disease, is one of the most common neurological disorder in which demyelinating of the axon occurs. The main symptoms of MS disease are fatigue, vision problems, stability issue, balance problems. Unfortunately, currently available treatments for this disease do not always guarantee the improvement of the condition of the MS patient and there has not been an accurate mechanism to measure the effectiveness of the treatment due to inter-patient heterogeneity. The factors that count for varying the performance of MS patients include environmental setting, weather, psychological status, dressing style and more. Also, patients may react differently while examined at specially arranged setting and this may not be the same while he/she is at home. Hence, it becomes a major problem for MS patients that how effectively a treatment slows down the progress of the disease and gives a relief for the patient. This thesis is trying to build a reliable system to estimate how good a treatment is for MS patients. Here I study the kinematic variables such as velocity of walking, stride length, variability and so on to find and compare the variations of the patient after a treatment given by the doctor, and trace these parameters for some patients after the treatment effect subdued.
Date Created
2012
Agent

Influence of histone deacetylase inhibitors on polymer mediated transgene delivery

150892-Thumbnail Image.png
Description
The effects of specific histone deacetylase inhibitors (HDACi) on transgene expression in combination with a novel polymer as a delivery vehicle are investigated in this research. Polymer vectors, although safer than viruses, are notorious for low levels of gene expression.

The effects of specific histone deacetylase inhibitors (HDACi) on transgene expression in combination with a novel polymer as a delivery vehicle are investigated in this research. Polymer vectors, although safer than viruses, are notorious for low levels of gene expression. In this investigation, the use of an emerging chemotherapeutic anti-cancer drug molecule, HDACi, was used to enhance the polymer-mediated gene expression. HDACi are capable of inhibiting deacetylation activities of histones and other non-histone proteins in the cytoplasm and nucleus, as well as increase transcriptional activities necessary for gene expression. In a prior study, a parallel synthesis and screening of polymers yielded a lead cationic polymer with high DNA-binding properties, and even more attractive, high transgene expressions. Previous studies showed the use of this polymer in conjunction with cytoplasmic HDACi significantly enhanced gene expression in PC3-PSMA prostate cancer cells. This led to the basis for the investigation presented in this thesis, but to use nuclear HDACi to potentially achieve similar results. The HDACi, HDACi_A, was a previously discovered lead drug that had potential to significantly enhance luciferase expression in PC3-PSMA cells. The results of this study found that the 20:1 polymer:plasmid DNA weight ratio was effective with 1 uM and 2 uM HDACI_A concentrations, showing up to a 9-fold enhancement. This enhancement suggested that HDACi_A was effectively aiding transfection. While not an astounding enhancement, it is still interesting enough to investigate further. Cell viabilities need to be determined to supplement the results.
Date Created
2012
Agent