Polarization Effects of GaN and AlGaN: Polarization Bound Charge, Band Bending, and Electronic Surface States

130408-Thumbnail Image.png
Description
GaN-based devices are currently limited by reliability issues such as gate leakage and current collapse, where the mechanisms responsible for degradation are closely related to the electronic surface state configuration. Therefore, understanding the electronic surface state configuration of GaN-based materials

GaN-based devices are currently limited by reliability issues such as gate leakage and current collapse, where the mechanisms responsible for degradation are closely related to the electronic surface state configuration. Therefore, understanding the electronic surface state configuration of GaN-based materials will help improve device performance. Since GaN has an inherent polarization, these materials are also subject to a bound polarization charge, which influences the electronic state configuration. In this study, the surface band bending of N-face GaN, Ga-face GaN, and Ga-face AlGaN was measured with x-ray photoemission spectroscopy after various cleaning steps to investigate the effects of the polarization. Despite the different surface bound charge on these materials, similar band bending was observed regardless of the magnitude or direction of the charge. Specifically, the band bending varied from −0.1 eV to 0.9 eV on these samples, which supported the models of a Fermi level pinning state at ∼0.4 eV to 0.8 eV below the conduction band. Based on available literature, we suggest this pinning state is indirectly evident of a nitrogen vacancy or gallium-dangling bond.
Date Created
2014-12-01
Agent

Surface band bending and band alignment of plasma enhanced atomic layer deposited dielectrics on Ga- and N-face gallium nitride

130423-Thumbnail Image.png
Description
The effects of surface pretreatment, dielectric growth, and post deposition annealing on interface electronic structure and polarization charge compensation of Ga- and N-face bulk GaN were investigated. The cleaning process consisted of an ex-situ wet chemical NH[subscript 4]OH treatment and

The effects of surface pretreatment, dielectric growth, and post deposition annealing on interface electronic structure and polarization charge compensation of Ga- and N-face bulk GaN were investigated. The cleaning process consisted of an ex-situ wet chemical NH[subscript 4]OH treatment and an in-situ elevated temperature NH[subscript 3] plasma process to remove carbon contamination, reduce oxygen coverage, and potentially passivate N-vacancy related defects. After the cleaning process, carbon contamination decreased below the x-ray photoemission spectroscopy detection limit, and the oxygen coverage stabilized at ∼1 monolayer on both Ga- and N-face GaN. In addition, Ga- and N-face GaN had an upward band bending of 0.8 ± 0.1 eV and 0.6 ± 0.1 eV, respectively, which suggested the net charge of the surface states and polarization bound charge was similar on Ga- and N-face GaN. Furthermore, three dielectrics (HfO[subscript 2], Al[subscript 2]O[subscript 3], and SiO[subscript 2]) were prepared by plasma-enhanced atomic layer deposition on Ga- or N-face GaN and annealed in N[subscript 2] ambient to investigate the effect of the polarization charge on the interface electronic structure and band offsets. The respective valence band offsets of HfO[subscript 2], Al[subscript 2]O[subscript 3], and SiO[subscript 2] with respect to Ga- and N-face GaN were 1.4 ± 0.1, 2.0 ± 0.1, and 3.2 ± 0.1 eV, regardless of dielectric thickness. The corresponding conduction band offsets were 1.0 ± 0.1, 1.3 ± 0.1, and 2.3 ± 0.1 eV, respectively. Experimental band offset results were consistent with theoretical calculations based on the charge neutrality level model. The trend of band offsets for dielectric/GaN interfaces was related to the band gap and/or the electronic part of the dielectric constant. The effect of polarization charge on band offset was apparently screened by the dielectric-GaN interface states.
Date Created
2014-09-28
Agent

Interface electronic state characterization of plasma enhanced atomic layer deposited dielectrics on GaN

152484-Thumbnail Image.png
Description
In this dissertation, the interface chemistry and electronic structure of plasma-enhanced atomic layer deposited (PEALD) dielectrics on GaN are investigated with x-ray and ultraviolet photoemission spectroscopy (XPS and UPS). Three interrelated issues are discussed in this study: (1) PEALD dielectric

In this dissertation, the interface chemistry and electronic structure of plasma-enhanced atomic layer deposited (PEALD) dielectrics on GaN are investigated with x-ray and ultraviolet photoemission spectroscopy (XPS and UPS). Three interrelated issues are discussed in this study: (1) PEALD dielectric growth process optimization, (2) interface electronic structure of comparative PEALD dielectrics on GaN, and (3) interface electronic structure of PEALD dielectrics on Ga- and N-face GaN. The first study involved an in-depth case study of PEALD Al2O3 growth using dimethylaluminum isopropoxide, with a special focus on oxygen plasma effects. Saturated and self-limiting growth of Al2O3 films were obtained with an enhanced growth rate within the PEALD temperature window (25-220 ºC). The properties of Al2O3 deposited at various temperatures were characterized to better understand the relation between the growth parameters and film properties. In the second study, the interface electronic structures of PEALD dielectrics on Ga-face GaN films were measured. Five promising dielectrics (Al2O3, HfO2, SiO2, La2O3, and ZnO) with a range of band gap energies were chosen. Prior to dielectric growth, a combined wet chemical and in-situ H2/N2 plasma clean process was employed to remove the carbon contamination and prepare the surface for dielectric deposition. The surface band bending and band offsets were measured by XPS and UPS for dielectrics on GaN. The trends of the experimental band offsets on GaN were related to the dielectric band gap energies. In addition, the experimental band offsets were near the calculated values based on the charge neutrality level model. The third study focused on the effect of the polarization bound charge of the Ga- and N-face GaN on interface electronic structures. A surface pretreatment process consisting of a NH4OH wet chemical and an in-situ NH3 plasma treatment was applied to remove carbon contamination, retain monolayer oxygen coverage, and potentially passivate N-vacancy related defects. The surface band bending and polarization charge compensation of Ga- and N-face GaN were investigated. The surface band bending and band offsets were determined for Al2O3, HfO2, and SiO2 on Ga- and N-face GaN. Different dielectric thicknesses and post deposition processing were investigated to understand process related defect formation and/or reduction.
Date Created
2014
Agent