Nutrient limitation of decomposers in the travertine streams of the Huachuca Mountains of southeastern Arizona

137561-Thumbnail Image.png
Description
Many studies have shown that as the calcium carbonate precipitates, it sequesters phosphate. Although the geochemical interactions between phosphate and calcium carbonate are known, only a few studies have considered calcium carbonate deposition's effect on stream ecology. Further, those studies

Many studies have shown that as the calcium carbonate precipitates, it sequesters phosphate. Although the geochemical interactions between phosphate and calcium carbonate are known, only a few studies have considered calcium carbonate deposition's effect on stream ecology. Further, those studies considering decomposition have produced conflicting results. In this study, nutrient-diffusing cups with organic substrata were used to determine the nutrient limitation of decomposers in the travertine streams in the Huachuca Mountains. After processing a subset of the experiments, only one site (in Huachuca Canyon) from the four study streams was significantly nutrient-limited (NP co-limitation).
Date Created
2013-05
Agent

Response of a Stoichiometrically Imbalanced Ecosystem to Manipulation of Nutrient Supplies and Ratios

130337-Thumbnail Image.png
Description
Cuatro Ciénegas Basin (CCB) is a desert ecosystem that hosts a large diversity of water bodies. Many surface waters in this basin have imbalanced nitrogen (N) to phosphorus (P) stoichiometry (total N:P > 100 by atoms), where P is likely

Cuatro Ciénegas Basin (CCB) is a desert ecosystem that hosts a large diversity of water bodies. Many surface waters in this basin have imbalanced nitrogen (N) to phosphorus (P) stoichiometry (total N:P > 100 by atoms), where P is likely to be a limiting nutrient. To investigate the effects of nutrient stoichiometry on planktonic and sediment ecosystem components and processes, we conducted a replicated in situ mesocosm experiment in Lagunita, a shallow pond located in the southwest region of the basin. Inorganic N and P were periodically added to mesocosms under three different N:P regimes (P only, N:P = 16 and N:P = 75) while the control mesocosms were left unamended. After three weeks of fertilization, more than two thirds of the applied P was immobilized into seston or sediment. The rapid uptake of P significantly decreased biomass C:P and N:P ratios, supporting the hypothesis that Lagunita is P-limited. Meanwhile, simultaneous N and P enrichment significantly enhanced planktonic growth, increasing total planktonic biomass by more than 2-fold compared to the unenriched control. With up to 76% of added N sequestered into the seston, it is suspected that the Lagunita microbial community also experienced strong N-limitation. However, when N and P were applied at N:P = 75, the microbes remained in a P-limitation state as in the untreated control. Two weeks after the last fertilizer application, seston C:P and N:P ratios returned to initial levels but chlorophyll a and seston C concentrations remained elevated. Additionally, no P release from the sediment was observed in the fertilized mesocosms. Overall, this study provides evidence that Lagunita is highly sensitive to nutrient perturbation because the biota is primarily P-limited and experiences a secondary N-limitation despite its high TN:TP ratio. This study serves as a strong basis to justify the need for protection of CCB ecosystems and other low-nutrient microbe-dominated systems from anthropogenic inputs of both N and P.
Date Created
2015-04-16
Agent

Diet Composition Affects the Rate and N:P Ratio of Fish Excretion

130394-Thumbnail Image.png
Description

Nutrient recycling by fish can be an important part of nutrient cycles in both freshwater and marine ecosystems. As a result, understanding the mechanisms that influence excretion elemental ratios of fish is of great importance to a complete understanding of

Nutrient recycling by fish can be an important part of nutrient cycles in both freshwater and marine ecosystems. As a result, understanding the mechanisms that influence excretion elemental ratios of fish is of great importance to a complete understanding of aquatic nutrient cycles. As fish consume a wide range of diets that differ in elemental composition, stoichiometric theory can inform predictions about dietary effects on excretion ratios.
We conducted a meta-analysis to test the effects of diet elemental composition on consumption and nutrient excretion by fish. We examined the relationship between consumption rate and diet N : P across all laboratory studies and calculated effect sizes for each excretion metric to test for significant effects.
Consumption rate of N, but not P, was significantly negatively affected by diet N : P. Effect sizes of diet elemental composition on consumption-specific excretion N, P and N : P in laboratory studies were all significantly different from 0, but effect size for raw excretion N : P was not significantly different from zero in laboratory or field surveys.
Our results highlight the importance of having a mechanistic understanding of the drivers of consumer excretion rates and ratios. We suggest that more research is needed on how consumption and assimilation efficiency vary with N : P and in natural ecosystems in order to further understand mechanistic processes in consumer-driven nutrient recycling.

Date Created
2015-03-01
Agent