Charge sensitive and label-free detection of molecules

157785-Thumbnail Image.png
Description
Quantifying molecular interactions is pivotal for understanding biological processes at molecular scale and for screening drugs. Although various detection technologies have been developed, it is still challenging to quantify the binding kinetics of small molecules because the sensitivities of the

Quantifying molecular interactions is pivotal for understanding biological processes at molecular scale and for screening drugs. Although various detection technologies have been developed, it is still challenging to quantify the binding kinetics of small molecules because the sensitivities of the mainstream technologies scale down with the size of the molecule. To address this problem, two different optical detection methods, charge sensitive optical detection (CSOD) and virion
ano-oscillators, are developed to measure the binding-induced charge change instead of the mass change, which enables quantification of the binding kinetics for both large and small molecules.

In particular, the nano-oscillator approach provides a unique capability to image individual nanoparticles and measure the size and charge of each nanoparticle simultaneously. This approach is applied to measure one of the smallest biological particles - single protein molecules. By tracking the oscillation of each protein molecule, the size, charge, and mobility are measured in real-time with high precision. This capability also allows to monitor the conformation and charge changes of single protein molecules upon ligand binding. Measuring the size and charge of single proteins opens a new revenue to protein analysis and disease biomarker detection at the single molecule level.

The virion
ano-oscillators and the single protein approach employ a scheme where a particle is tethered to the surface with a polymer molecule. The dynamics of the particle is governed by two important forces: One is entropic force arising from the conformational change of the molecular tether, and the other is solvent damping on the particle and the molecule. The dynamics is studied by varying the type of the tether molecule, size of the particle, and viscosity of the solvent. The findings provide insights into single molecule studies using not only tethered particles, but also other approaches, including force spectroscopy using atomic force microscopy and nanopores.
Date Created
2019
Agent

Investigating the Relationship Between Astrocytes and Neurons in Alzheimer’s Disease: The Axonal Transport of Amyloid Precursor Protein within Neurons

132025-Thumbnail Image.png
Description
As Alzheimer’s disease (AD) increases in incidence, there is an increased investigation into the pathogenesis of the disease in hopes of finding a cure to the neurodegenerative disease. The two key hallmarks of AD consist of amyloid beta plaques and

As Alzheimer’s disease (AD) increases in incidence, there is an increased investigation into the pathogenesis of the disease in hopes of finding a cure to the neurodegenerative disease. The two key hallmarks of AD consist of amyloid beta plaques and hyperphosphorylated tau fibrillary tangles. Amyloid beta is a peptide that is proteolytically cleaved from the type I transmembrane glycolytic amyloid precursor protein (APP). APP is highly conserved across species, suggesting the importance of APP in healthy brain functioning. However, when APP is cleaved through the amyloidogenic pathway it produces amyloid beta. The trafficking of APP within neurons has been a new endeavor for neurodegenerative disease research, as reduced retrograde trafficking of APP has been hypothesized to increase the likelihood of the amyloidogenic cleavage of APP, resulting in increased amyloid beta presence (Ye et al., 2017). The findings of this study suggest that transport of APP within neurons is significantly inhibited by increased extracellular glutamate concentration. The addition of human primary astrocytes within a human neuron co-culture allowed for significantly increased retrograde transport of APP within neurons, even within high glutamate conditions. These finding enhance the current field of research regarding astrocytes neuroprotective role within the brain, but bring attention to the role that astrocytes have upon regulation of the axonal transport of proteins within neurons.
Date Created
2019-12
Agent

Foundational studies for array-based electrophoretic exclusion of proteins

157398-Thumbnail Image.png
Description
Disease prevention and personalized treatment will be impacted by the continued integration of protein biomarkers into medical practice. While there are already numerous biomarkers used clinically, the detection of protein biomarkers among complex matrices remains a challenging problem. One very

Disease prevention and personalized treatment will be impacted by the continued integration of protein biomarkers into medical practice. While there are already numerous biomarkers used clinically, the detection of protein biomarkers among complex matrices remains a challenging problem. One very important strategy for improvements in clinical application of biomarkers is separation/preconcentration, impacting the reliability, efficiency and early detection. Electrophoretic exclusion can be used to separate, purify, and concentrate biomarkers. This counterflow gradient technique exploits hydrodynamic flow and electrophoretic forces to exclude, enrich, and separate analytes. The development of this technique has evolved onto an array-based microfluidic platform which offers a greater range of geometries/configurations for optimization and expanded capabilities and applications. Toward this end of expanded capabilities, fundamental studies of subtle changes to the entrance flow and electric field configurations are investigated. Three closely related microfluidic interfaces are modeled, fabricated and tested. A charged fluorescent dye is used as a sensitive and accurate probe to test the concentration variation at these interfaces. Models and experiments focus on visualizing the concentration profile in areas of high temporal dynamics, and show strong qualitative agreement, which suggests the theoretical assessment capabilities can be used to faithfully design novel and more efficient interfaces. Microfluidic electrophoretic separation technique can be combined with electron microscopy as a protein concentration/purification step aiding in sample preparation. The integrated system with grids embedded into the microdevice reduces the amount of time required for sample preparation to less than five minutes. Spatially separated and preconcentrated proteins are transferred directly from an upstream reservoir onto grids. Dilute concentration as low as 0.005 mg/mL can be manipulated to achieve meaningful results. Selective concentration of one protein from a mixture of two proteins is also demonstrated. Electrophoretic exclusion is also used for biomarker applications. Experiments using a single biomarker are conducted to assess the ability of the microdevice for enrichment in central reservoirs. A mixture of two protein biomarkers are performed to evaluate the proficiency of the device for separations capability. Moreover, a battery is able to power the microdevice, which facilitates the future application as a portable device.
Date Created
2019
Agent

Blood plasma-based glycan nodes as lung cancer markers and the problem of biospecimen integrity in a multi-site clinical study

157319-Thumbnail Image.png
Description
Cancer is a major public health challenge and the second leading cause of death in the United States. Large amount of effort has been made to achieve sensitive and specific detection of cancer, and to predict the course of cancer.

Cancer is a major public health challenge and the second leading cause of death in the United States. Large amount of effort has been made to achieve sensitive and specific detection of cancer, and to predict the course of cancer. Glycans are promising avenues toward the diagnosis and prognosis of cancer, because aberrant glycosylation is a prevalent hallmark of diverse types of cancer. A bottom-up “glycan node analysis” approach was employed as a useful tool, which captures most essential glycan features from blood plasma or serum (P/S) specimens and quantifies them as single analytical signals, to a lung cancer set from the Women Epidemiology Lung Cancer (WELCA) study. In addition, developments were performed to simplify a relatively cumbersome step involved in sample preparation of glycan node analysis. Furthermore, as a biomarker discovery research, one crucial concern of the glycan node analysis is to ensure that the specimen integrity has not been compromised for the employed P/S samples. A simple P/S integrity quality assurance assay was applied to the same sample set from WELCA study, which also afford the opportunity to evaluate the effects of different collection sites on sample integrity in a multisite clinical trial.

Here, 208 samples from lung cancer patients and 207 age-matched controls enrolled in the WELCA study were analyzed by glycan node analysis. Glycan features, quantified as single analytical signals, including 2-linked mannose, α2‐6 sialylation, β1‐4 branching, β1‐6 branching, 4-linked GlcNAc, and outer-arm fucosylation, exhibited abilities to distinguish lung cancer cases from controls and predict survival in patients.

To circumvent the laborious preparation steps for permethylation of glycan node analysis, a spin column-free (SCF) glycan permethylation procedure was developed, applicable to both intact glycan analysis or glycan node analysis, with improved or comparable permethylation efficiency relative to some widely-used spin column-based procedures.

Biospecimen integrity of the same set of plasma samples from WELCA study was evaluated by a simple intact protein assay (ΔS-Cysteinylated-Albumin), which quantifies cumulative exposure of P/S to thawed conditions (-30 °C). Notable differences were observed between different groups of samples with various initial handling/storage conditions, as well as among the different collection sites.
Date Created
2019
Agent

Sensing and regulation from nucleic acid devices

157213-Thumbnail Image.png
Description
The highly predictable structural and thermodynamic behavior of deoxynucleic acid (DNA) and ribonucleic acid (RNA) have made them versatile tools for creating artificial nanostructures over broad range. Moreover, DNA and RNA are able to interact with biological ligand as either

The highly predictable structural and thermodynamic behavior of deoxynucleic acid (DNA) and ribonucleic acid (RNA) have made them versatile tools for creating artificial nanostructures over broad range. Moreover, DNA and RNA are able to interact with biological ligand as either synthetic aptamers or natural components, conferring direct biological functions to the nucleic acid devices. The applications of nucleic acids greatly relies on the bio-reactivity and specificity when applied to highly complexed biological systems.

This dissertation aims to 1) develop new strategy to identify high affinity nucleic acid aptamers against biological ligand; and 2) explore highly orthogonal RNA riboregulators in vivo for constructing multi-input gene circuits with NOT logic. With the aid of a DNA nanoscaffold, pairs of hetero-bivalent aptamers for human alpha thrombin were identified with ultra-high binding affinity in femtomolar range with displaying potent biological modulations for the enzyme activity. The newly identified bivalent aptamers enriched the aptamer tool box for future therapeutic applications in hemostasis, and also the strategy can be potentially developed for other target molecules. Secondly, by employing a three-way junction structure in the riboregulator structure through de-novo design, we identified a family of high-performance RNA-sensing translational repressors that down-regulates gene translation in response to cognate RNAs with remarkable dynamic range and orthogonality. Harnessing the 3WJ repressors as modular parts, we integrate them into biological circuits that execute universal NAND and NOR logic with up to four independent RNA inputs in Escherichia coli.
Date Created
2019
Agent

Multiplexed single-cell spatial proteomics and transcriptomics

156996-Thumbnail Image.png
Description
Single-cell proteomics and transcriptomics analysis are crucial to gain insights of

healthy physiology and disease pathogenesis. The comprehensive profiling of biomolecules in individual cells of a heterogeneous system can provide deep insights into many important biological questions, such as the distinct

Single-cell proteomics and transcriptomics analysis are crucial to gain insights of

healthy physiology and disease pathogenesis. The comprehensive profiling of biomolecules in individual cells of a heterogeneous system can provide deep insights into many important biological questions, such as the distinct cellular compositions or regulation of inter- and intracellular signaling pathways of healthy and diseased tissues. With multidimensional molecular imaging of many different biomarkers in patient biopsies, diseases can be accurately diagnosed to guide the selection of the ideal treatment.

As an urgent need to advance single-cell analysis, imaging-based technologies have been developed to detect and quantify multiple DNA, RNA and protein molecules in single cell in situ. Novel fluorescent probes have been designed and synthesized, which targets specifically either their nucleic acid counterpart or protein epitopes. These highly multiplexed imaging-based platforms have the potential to detect and quantify 100 different protein molecules and 1000 different nucleic acids in a single cell.

Using novel fluorescent probes, a large number of biomolecules have been detected and quantified in formalin-fixed paraffin-embedded (FFPE) brain tissue at single-cell resolution. By studying protein expression levels, neuronal heterogeneity has been revealed in distinct subregions of human hippocampus.
Date Created
2018
Agent

Higher order electrokinetic effects for applied biological analytics

156941-Thumbnail Image.png
Description
Microfluidic systems have gained popularity in the last two decades for their potential applications in manipulating micro- and nano- particulates of interest. Several different microfluidics devices have been built capable of rapidly probing, sorting, and trapping analytes of interest. Microfluidics

Microfluidic systems have gained popularity in the last two decades for their potential applications in manipulating micro- and nano- particulates of interest. Several different microfluidics devices have been built capable of rapidly probing, sorting, and trapping analytes of interest. Microfluidics can be combined with separation science to address challenges of obtaining a concentrated and pure distinct analyte from mixtures of increasingly similar entities. Many of these techniques have been developed to assess biological analytes of interest; one of which is dielectrophoresis (DEP), a force which acts on polarizable analytes in the presence of a non-uniform electric fields. This method can achieve high resolution separations with the unique attribute of concentrating, rather than diluting, analytes upon separation. Studies utilizing DEP have manipulated a wide range of analytes including various cell types, proteins, DNA, and viruses. These analytes range from approximately 50 nm to 1 µm in size. Many of the currently-utilized techniques for assessing these analytes are time intensive, cost prohibitive, and require specialized equipment and technical skills.

The work presented in this dissertation focuses on developing and utilizing insulator-based dielectrophoresis (iDEP) to probe a wide range of analytes; where the intrinsic properties of an analyte will determine its behavior in a microchannel. This is based on the analyte’s interactions with the electrokinetic and dielectrophoretic forces present. Novel applications of this technique to probe the biophysical difference(s) between serovars of the foodborne pathogen, Listeria monocytogenes, and surface modified Escherichia coli, are investigated. Both of these applications demonstrate the capabilities of iDEP to achieve high resolution separations and probe slight changes in the biophysical properties of an analyte of interest. To improve upon existing iDEP strategies a novel insulator design which streamlines analytes in an iDEP device while still achieving the desirable forces for separation is developed, fabricated, and tested. Finally, pioneering work to develop an iDEP device capable of manipulating larger analytes, which range in size 10-250 µm, is presented.
Date Created
2018
Agent

Comparison of SPR and Edge Tracking as a Measure of Binding Kinetics in Whole Cells

156842-Thumbnail Image.png
Description
Most drugs work by binding to receptors on the cell surface. These receptors can then carry the message into the cell and have a wide array of results. However, studying how fast the binding is can be difficult. Current methods

Most drugs work by binding to receptors on the cell surface. These receptors can then carry the message into the cell and have a wide array of results. However, studying how fast the binding is can be difficult. Current methods involve extracting the receptor and labeling them, but both these steps have issues. Previous works found that binding on the cell surface is accompanied with a small change in cell size, generally an increase. They have also developed an algorithm that can track these small changes without a label using a simple bright field microscope. Here, this relationship is further explored by comparing edge tracking results to a more widely used method, surface plasmon resonance. The kinetic constants found from the two methods are in agreement. No corrections or manipulations were needed to create agreement. The Bland-Altman plots shows that the error between the two methods is about 0.009 s-1. This is about the same error between cells, making it a non-dominant source of error.
Date Created
2018
Agent

Structural Elucidation of Membrane Proteins Involved in Photosynthesis

156776-Thumbnail Image.png
Description
Over the last century, X-ray crystallography has been established as the most successful technique for unravelling the structure-function relationship in molecules. For integral membrane proteins, growing well-ordered large crystals is a challenge and hence, there is room for improving current

Over the last century, X-ray crystallography has been established as the most successful technique for unravelling the structure-function relationship in molecules. For integral membrane proteins, growing well-ordered large crystals is a challenge and hence, there is room for improving current methods of macromolecular crystallography and for exploring complimentary techniques. Since protein function is deeply associated with its structural dynamics, static position of atoms in a macromolecule are insufficient to unlock the mechanism.

The availability of X-ray free electron lasers presents an opportunity to study micron-sized crystals that could be triggered (using light, small molecules or physical conditions) to capture macromolecules in action. This method of ‘Time-resolved serial crystallography’ answers key biological questions by capturing snapshots of conformational changes associated with multi-step reactions. This dissertation describes approaches for studying structures of large membrane protein complexes. Both macro and micro-seeding techniques have been implemented for improving crystal quality and obtaining high-resolution structures. Well-diffracting 15-20 micron crystals of active Photosystem II were used to perform time-resolved studies with fixed-target Roadrunner sample delivery system. By employing continuous diffraction obtained up to 2 A, significant progress can be made towards understanding the process of water oxidation.

Structure of Photosystem I was solved to 2.3 A by X-ray crystallography and to medium resolution of 4.8 A using Cryogenic electron microscopy. Using complimentary techniques to study macromolecules provides an insight into differences among methods in structural biology. This helps in overcoming limitations of one specific technique and contributes in greater knowledge of the molecule under study.
Date Created
2018
Agent

Ultrafine dielectrophoresis-based technique for virus and biofluid manipulation

155985-Thumbnail Image.png
Description
Microfluidics has shown great potential in rapid isolation, sorting, and concentration of bioparticles upon its discovery. Over the past decades, significant improvements have been made in device fabrication techniques and microfluidic methodologies. As a result, considerable microfluidic-based isolation and concentration

Microfluidics has shown great potential in rapid isolation, sorting, and concentration of bioparticles upon its discovery. Over the past decades, significant improvements have been made in device fabrication techniques and microfluidic methodologies. As a result, considerable microfluidic-based isolation and concentration techniques have been developed, particularly for rapid pathogen detection. Among all microfluidic techniques, dielectrophoresis (DEP) is one of the most effective and efficient techniques to quickly isolate and separate polarizable particles under inhomogeneous electric field. To date, extensive studies have demonstrated that DEP devices are able to precisely manipulate cells ranging from over 10 μm (mammalian cells) down to about 1 μm (small bacteria). However, very limited DEP studies on manipulating submicron bioparticles, such as viruses, have been reported.

In this dissertation, rapid capture and concentration of two different and representative types of virus particles (Sindbis virus and bacteriophage M13) with gradient insulator-based DEP (g-iDEP) has been demonstrated. Sindbis virus has a near-spherical shape with a diameter ~68 nm, while bacteriophage M13 has a filamentous shape with a length ~900 nm and a diameter ~6 nm. Under specific g-iDEP experimental conditions, the concentration of Sindbis virus can be increased two to six times within only a few seconds, using easily accessible voltages as low as 70 V. A similar phenomenon is also observed with bacteriophage M13. Meanwhile, their different DEP behavior predicts the potential of separating viruses with carefully designed microchannels and choices of experimental condition.

DEP-based microfluidics also shows great potential in manipulating blood samples, specifically rapid separations of blood cells and proteins. To investigate the ability of g-iDEP device in blood sample manipulation, some proofs of principle work was accomplished including separating two cardiac disease-related proteins (myoglobin and heart-type fatty acid binding protein) and red blood cells (RBCs). Consistent separation was observed, showing retention of RBCs and passage of the two spiked protein biomarkers. The numerical concentration of RBCs was reduced (~70 percent after one minute) with the purified proteins available for detection or further processing. This study explores and extends the use of the device from differentiating similar particles to acting as a sample pretreatment step.
Date Created
2017
Agent