Heritability of Elaborate Coloration in the Pipevine Swallowtail, Battus philenor

136666-Thumbnail Image.png
Description
Two primary contexts for the adaptive evolution of bright coloration are competition for mates (i.e. mate choice) and avoiding predator attacks (i.e. warning coloration). Bright animal coloration can be iridescent, in which the surface appears to change color with changing

Two primary contexts for the adaptive evolution of bright coloration are competition for mates (i.e. mate choice) and avoiding predator attacks (i.e. warning coloration). Bright animal coloration can be iridescent, in which the surface appears to change color with changing viewing or illumination angle. Bright animal coloration can also be produced by pigments, which do not appear to change color with changing viewing or illumination angle. The Pipevine Swallowtail, Battus philenor, is unique in having both sexual signals and warning coloration that include iridescent and pigment components, both of which are variable in color. The aim of our study was to examine the role genes play in producing this variation, providing us a sense of potential indirect benefits of female choice. We tested the hypothesis that color variation has a genetic component. We predicted that in a full-sib analysis there should be greater variation in the coloration of the sexual and warning signal among families than within families. We reared B. philenor under standard laboratory conditions and analyzed heritability using a full-sib analysis. We collected reflectance measurements for components of the sexual and warning signal iridescence using a spectrophotometer and used CLR (color analysis software) to extract brightness, hue, and chroma values. We used a multivariate ANOVA (IBM SPSS, v. 21) to analyze the warning signal variation, and a generalized linear mixed model (IBM SPSS, v. 21) to analyze the sexual versus warning signal variation in males. A significance value of 0.05 was used for both analyses. Our results indicated a genetic component to coloration, implicating indirect benefits in B. philenor female mate bias. Further research on bright coloration in B. philenor indicates that there may also be direct benefits of female mate choice.
Date Created
2014-12
Agent

Male Wing Color Properties Predict the Size of Nuptial Gifts Given During Mating in the Pipevine Swallowtail Butterfly (Battus Philenor)

129643-Thumbnail Image.png
Description

In many animals, males bear bright ornamental color patches that may signal both the direct and indirect benefits that a female might accrue from mating with him. Here we test whether male coloration in the Pipevine Swallowtail butterfly, Battus philenor,

In many animals, males bear bright ornamental color patches that may signal both the direct and indirect benefits that a female might accrue from mating with him. Here we test whether male coloration in the Pipevine Swallowtail butterfly, Battus philenor, predicts two potential direct benefits for females: brief copulation duration and the quantity of materials the male passes to the female during mating. In this species, males have a bright iridescent blue field on the dorsal hindwing surface, while females have little or no dorsal iridescence. Females preferentially mate with males who display a bright and highly chromatic blue field on their dorsal hindwing. In this study, we show that the chroma of the blue field on the male dorsal hindwing and male body size (forewing length) significantly predict the mass of material or spermatophore that a male forms within the female's copulatory sac during mating. We also found that spermatophore mass correlated negatively with copulation duration, but that color variables did not significantly predict this potential direct benefit. These results suggest that females may enhance the material benefits they receive during mating by mating with males based on the coloration of their dorsal hindwing.

Date Created
2013
Agent