The decline of honeybee colonies around the world has been linked to the presence of the Varroa destructor, a mite acting as a virus vector for the Acute Bee Paralysis Virus. We developed a model of the infestation of the…
The decline of honeybee colonies around the world has been linked to the presence of the Varroa destructor, a mite acting as a virus vector for the Acute Bee Paralysis Virus. We developed a model of the infestation of the Apis melliifera honeybee colony by the Acute Bee Paralysis Virus, which is transmitted by the parasitic Varroa destructor. This is a four dimensional system of nonlinear ODE's for healthy and virus infected bees, total number of mites in the colony and number of mites that carry the virus. The Acute Bee Paralysis Virus can be transmitted between infected and uninfected bees, infected mite to adult bee, infected bee to phoretic mite, and reproductive mites to bee brood. This model is studied with analytical techniques deriving the conditions under which the bee colony can fight off an Acute Bee Paralysis Virus epidemic.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
This dissertation investigates the dynamics of evolutionary games based on the framework of interacting particle systems in which individuals are discrete, space is explicit, and dynamics are stochastic. Its focus is on 2-strategy games played on a d-dimensional integer…
This dissertation investigates the dynamics of evolutionary games based on the framework of interacting particle systems in which individuals are discrete, space is explicit, and dynamics are stochastic. Its focus is on 2-strategy games played on a d-dimensional integer lattice with a range of interaction M. An overview of related past work is given along with a summary of the dynamics in the mean-field model, which is described by the replicator equation. Then the dynamics of the interacting particle system is considered, first when individuals are updated according to the best-response update process and then the death-birth update process. Several interesting results are derived, and the differences between the interacting particle system model and the replicator dynamics are emphasized. The terms selfish and altruistic are defined according to a certain ordering of payoff parameters. In these terms, the replicator dynamics are simple: coexistence occurs if both strategies are altruistic; the selfish strategy wins if one strategy is selfish and the other is altruistic; and there is bistability if both strategies are selfish. Under the best-response update process, it is shown that there is no bistability region. Instead, in the presence of at least one selfish strategy, the most selfish strategy wins, while there is still coexistence if both strategies are altruistic. Under the death-birth update process, it is shown that regardless of the range of interactions and the dimension, regions of coexistence and bistability are both reduced. Additionally, coexistence occurs in some parameter region for large enough interaction ranges. Finally, in contrast with the replicator equation and the best-response update process, cooperators can win in the prisoner's dilemma for the death-birth process in one-dimensional nearest-neighbor interactions.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
The best-response dynamics is an example of an evolutionary game where players update their strategy in order to maximize their payoff. The main objective of this paper is to study a stochastic spatial version of this game based on the…
The best-response dynamics is an example of an evolutionary game where players update their strategy in order to maximize their payoff. The main objective of this paper is to study a stochastic spatial version of this game based on the framework of interacting particle systems in which players are located on an infinite square lattice. In the presence of two strategies, and calling a strategy selfish or altruistic depending on a certain ordering of the coefficients of the underlying payoff matrix, a simple analysis of the nonspatial mean-field approximation of the spatial model shows that a strategy is evolutionary stable if and only if it is selfish, making the system bistable when both strategies are selfish. The spatial and nonspatial models agree when at least one strategy is altruistic. In contrast, we prove that in the presence of two selfish strategies and in any spatial dimension, only the most selfish strategy remains evolutionary stable. The main ingredients of the proof are monotonicity results and a coupling between the best-response dynamics properly rescaled in space with bootstrap percolation to compare the infinite time limits of both systems.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Similarly to the popular voter model, the Deffuant model describes opinion dynamics taking place in spatially structured environments represented by a connected graph. Pairs of adjacent vertices interact at a constant rate. If the opinion distance between the interacting vertices…
Similarly to the popular voter model, the Deffuant model describes opinion dynamics taking place in spatially structured environments represented by a connected graph. Pairs of adjacent vertices interact at a constant rate. If the opinion distance between the interacting vertices is larger than some confidence threshold epsilon > 0, then nothing happens, otherwise, the vertices' opinions get closer to each other. It has been conjectured based on numerical simulations that this process exhibits a phase transition at the critical value epsilon(c) = 1/2. For confidence thresholds larger than one half, the process converges to a global consensus, whereas coexistence occurs for confidence thresholds smaller than one half. In this article, we develop new geometrical techniques to prove this conjecture.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Rabies disease remains enzootic among raccoons, skunks, foxes and bats in the United States. It is of primary concern for public-health agencies to control spatial spread of rabies in wildlife and its potential spillover infection of domestic animals and humans.…
Rabies disease remains enzootic among raccoons, skunks, foxes and bats in the United States. It is of primary concern for public-health agencies to control spatial spread of rabies in wildlife and its potential spillover infection of domestic animals and humans. Rabies is invariably fatal in wildlife if untreated, with a non-negligible incubation period. Understanding how this latency affects spatial spread of rabies in wildlife is the concern of chapter 2 and 3. Chapter 1 deals with the background of mathematical models for rabies and lists main objectives. In chapter 2, a reaction-diffusion susceptible-exposed-infected (SEI) model and a delayed diffusive susceptible-infected (SI) model are constructed to describe the same epidemic process -- rabies spread in foxes. For the delayed diffusive model a non-local infection term with delay is resulted from modeling the dispersal during incubation stage. Comparison is made regarding minimum traveling wave speeds of the two models, which are verified using numerical experiments. In chapter 3, starting with two Kermack and McKendrick's models where infectivity, death rate and diffusion rate of infected individuals can depend on the age of infection, the asymptotic speed of spread $c^\ast$ for the cumulated force of infection can be analyzed. For the special case of fixed incubation period, the asymptotic speed of spread is governed by the same integral equation for both models. Although explicit solutions for $c^\ast$ are difficult to obtain, assuming that diffusion coefficient of incubating animals is small, $c^\ast$ can be estimated in terms of model parameter values. Chapter 4 considers the implementation of realistic landscape in simulation of rabies spread in skunks and bats in northeast Texas. The Finite Element Method (FEM) is adopted because the irregular shapes of realistic landscape naturally lead to unstructured grids in the spatial domain. This implementation leads to a more accurate description of skunk rabies cases distributions.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Parallel Monte Carlo applications require the pseudorandom numbers used on each processor to be independent in a probabilistic sense. The TestU01 software package is the standard testing suite for detecting stream dependence and other properties that make certain pseudorandom generators…
Parallel Monte Carlo applications require the pseudorandom numbers used on each processor to be independent in a probabilistic sense. The TestU01 software package is the standard testing suite for detecting stream dependence and other properties that make certain pseudorandom generators ineffective in parallel (as well as serial) settings. TestU01 employs two basic schemes for testing parallel generated streams. The first applies serial tests to the individual streams and then tests the resulting P-values for uniformity. The second turns all the parallel generated streams into one long vector and then applies serial tests to the resulting concatenated stream. Various forms of stream dependence can be missed by each approach because neither one fully addresses the multivariate nature of the accumulated data when generators are run in parallel. This dissertation identifies these potential faults in the parallel testing methodologies of TestU01 and investigates two different methods to better detect inter-stream dependencies: correlation motivated multivariate tests and vector time series based tests. These methods have been implemented in an extension to TestU01 built in C++ and the unique aspects of this extension are discussed. A variety of different generation scenarios are then examined using the TestU01 suite in concert with the extension. This enhanced software package is found to better detect certain forms of inter-stream dependencies than the original TestU01 suites of tests.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
By the von Neumann min-max theorem, a two person zero sum game with finitely many pure strategies has a unique value for each player (summing to zero) and each player has a non-empty set of optimal mixed strategies. If…
By the von Neumann min-max theorem, a two person zero sum game with finitely many pure strategies has a unique value for each player (summing to zero) and each player has a non-empty set of optimal mixed strategies. If the payoffs are independent, identically distributed (iid) uniform (0,1) random variables, then with probability one, both players have unique optimal mixed strategies utilizing the same number of pure strategies with positive probability (Jonasson 2004). The pure strategies with positive probability in the unique optimal mixed strategies are called saddle squares. In 1957, Goldman evaluated the probability of a saddle point (a 1 by 1 saddle square), which was rediscovered by many authors including Thorp (1979). Thorp gave two proofs of the probability of a saddle point, one using combinatorics and one using a beta integral. In 1965, Falk and Thrall investigated the integrals required for the probabilities of a 2 by 2 saddle square for 2 × n and m × 2 games with iid uniform (0,1) payoffs, but they were not able to evaluate the integrals. This dissertation generalizes Thorp's beta integral proof of Goldman's probability of a saddle point, establishing an integral formula for the probability that a m × n game with iid uniform (0,1) payoffs has a k by k saddle square (k ≤ m,n). Additionally, the probabilities of a 2 by 2 and a 3 by 3 saddle square for a 3 × 3 game with iid uniform(0,1) payoffs are found. For these, the 14 integrals observed by Falk and Thrall are dissected into 38 disjoint domains, and the integrals are evaluated using the basic properties of the dilogarithm function. The final results for the probabilities of a 2 by 2 and a 3 by 3 saddle square in a 3 × 3 game are linear combinations of 1, π2, and ln(2) with rational coefficients.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)