Development of homogeneous molybdenum catalysts for the activation of small molecules

155094-Thumbnail Image.png
Description
Over the last few decades, homogeneous molybdenum catalysis has been a center of interest to inorganic, organic, and organometallic chemists. Interestingly, most of the important advancements in molybdenum chemistry such as non-classical dihydrogen coordination, dinitrogen reduction, olefin metathesis, and water

Over the last few decades, homogeneous molybdenum catalysis has been a center of interest to inorganic, organic, and organometallic chemists. Interestingly, most of the important advancements in molybdenum chemistry such as non-classical dihydrogen coordination, dinitrogen reduction, olefin metathesis, and water reduction utilize diverse oxidation states of the metal. However, employment of redox non-innocent ligands to tune the stability and reactivity of such catalysts have been overlooked. With this in mind, the Trovitch group has developed a series of novel bis(imino)pyridine (or pyridine diimine, PDI) and diimine (DI) ligands that have coordinating phosphine or amine arms to exert coordination flexibility to the designed complexes. The research described in this dissertation is focused on the development of molybdenum catalysts that are supported by PDI and DI chelates and their application in small molecule activation.

Using the phosphine containing PDI chelate, Ph2PPrPDI, several low-valent molybdenum complexes have been synthesized and characterized. While the zerovalent monocarbonyl complex, (Ph2PPrPDI)MoCO, catalyzes the reduction of aldehyde C=O bonds, the C-H activated Mo(II) complex, (6-P,N,N,N,C,P-Ph2PPrPDI)MoH was found to be the first well-defined molybdenum catalyst for reducing carbon dioxide to methanol. Along with low- oxidation state compounds, a Mo(IV) complex, [(Ph2PPrPDI)MoO][PF6]2 was also synthesized and utilized in electrocatalytic hydrogen production from neutral water. Moreover, with the proper choice of reductant, an uncommon Mo(I) oxidation state was stabilized and characterized by electron paramagnetic resonance spectroscopy and single crystal X-ray diffraction.

While the synthesized (PDI)Mo complexes unveiled versatile reduction chemistry, varying the ligand backbone to DI uncovered completely different reactivity when bound to molybdenum. Unlike PDI, no chelate-arm C-H activation was observed with the propyl phosphine DI, Ph2PPrDI; instead, a bis(dinitrogen) Mo(0) complex, (Ph2PPrDI)Mo(N2)2 was isolated. Surprisingly, this complex was found to convert carbon dioxide into dioxygen and carbon monoxide under ambient conditions through a novel tail-to-tail CO2 reductive coupling pathway. Detailed experimental and theoretical studies are underway to gain further information about the possible mechanism of Mo mediated direct conversion of CO2 to O2.
Date Created
2016
Agent

Preparation and Hydrosilylation Activity of a Molybdenum Carbonyl Complex That Features a Pentadentate Bis(imino)pyridine Ligand

129505-Thumbnail Image.png
Description

Attempts to prepare low-valent molybdenum complexes that feature a pentadentate 2,6-bis(imino)pyridine (or pyridine diimine, PDI) chelate allowed for the isolation of two different products. Refluxing Mo(CO)6 with the pyridine-substituted PDI ligand, PyEtPDI, resulted in carbonyl ligand substitution and formation of

Attempts to prepare low-valent molybdenum complexes that feature a pentadentate 2,6-bis(imino)pyridine (or pyridine diimine, PDI) chelate allowed for the isolation of two different products. Refluxing Mo(CO)6 with the pyridine-substituted PDI ligand, PyEtPDI, resulted in carbonyl ligand substitution and formation of the respective bis(ligand) compound (PyEtPDI)2Mo (1). This complex was investigated by single-crystal X-ray diffraction, and density functional theory calculations indicated that 1 possesses a Mo(0) center that back-bonds into the π*-orbitals of the unreduced PDI ligands. Heating an equimolar solution of Mo(CO)[subscript 6] and the phosphine-substituted PDI ligand, Ph2PPrPDI, to 120 °C allowed for the preparation of (Ph2PPrPDI)Mo(CO) (2), which is supported by a κ5-N,N,N,P,P-Ph2PPrPDI chelate. Notably, 1 and 2 have been found to catalyze the hydrosilylation of benzaldehyde at 90 °C, and the optimization of 2-catalyzed aldehyde hydrosilylation at this temperature afforded turnover frequencies of up to 330 h–1. Considering additional experimental observations, the potential mechanism of 2-mediated carbonyl hydrosilylation is discussed.

Date Created
2014-09-01
Agent