Glacial processes on Earth and Mars: new perspectives from remote sensing and laboratory analyses
Chemical weathering at Robertson Glacier, a small alpine glacier in the Canadian Rocky Mountains, is examined with a multidisciplinary approach. The relative proportions of differing dissolution reactions at various stages in the glacial system are empirically determined using aqueous geochemistry. Synthesis of laboratory and orbital thermal infrared spectroscopy allows identification of dissolution rinds on hand samples and characterization of carbonate dissolution signals at orbital scales, while chemical and morphological evidence for thin, discontinuous weathering rinds at microscales are evident from electron microscopy. Subglacial dissolution rates are found to outpace those of the proglacial till plain; biologically-mediated pyrite oxidation drives the bulk of this acidic weathering.
Second, the area-elevation relationship, or hypsometry, of LDA in the midlatitudes of Mars is characterized. These glaciers are believed to have formed ~500 Ma during a climate excursion. Hypsometric measurements of these debris-covered glaciers enable insight into past flow regimes and drive predictions about past climate scenarios. The LDA in this study fall into three major groups, strongly dependent on basal elevation, implying regional and climatic controls on ice formation and flow.
I show that biologically-mediated mineral reactions drive high subglacial dissolution rates, such that variations within the valley can be detected with remote sensing techniques. In future work, these insights can be applied to examining Mars’ glacial regions for signs of chemical alteration and biosignatures.
- Author (aut): Rutledge, Alicia Marie
- Thesis advisor (ths): Christensen, Philip R.
- Committee member: Shock, Everett
- Committee member: Clarke, Amanda
- Committee member: Sharp, Thomas
- Committee member: Whipple, Kelin
- Publisher (pbl): Arizona State University