Multisensory Interactions Influence Neuronal Spike Train Dynamics in the Posterior Parietal Cortex

128815-Thumbnail Image.png
Description

Although significant progress has been made in understanding multisensory interactions at the behavioral level, their underlying neural mechanisms remain relatively poorly understood in cortical areas, particularly during the control of action. In recent experiments where animals reached to and actively

Although significant progress has been made in understanding multisensory interactions at the behavioral level, their underlying neural mechanisms remain relatively poorly understood in cortical areas, particularly during the control of action. In recent experiments where animals reached to and actively maintained their arm position at multiple spatial locations while receiving either proprioceptive or visual-proprioceptive position feedback, multisensory interactions were shown to be associated with reduced spiking (i.e. subadditivity) as well as reduced intra-trial and across-trial spiking variability in the superior parietal lobule (SPL). To further explore the nature of such interaction-induced changes in spiking variability we quantified the spike train dynamics of 231 of these neurons. Neurons were classified as Poisson, bursty, refractory, or oscillatory (in the 13–30 Hz “beta-band”) based on their spike train power spectra and autocorrelograms. No neurons were classified as Poisson-like in either the proprioceptive or visual-proprioceptive conditions. Instead, oscillatory spiking was most commonly observed with many neurons exhibiting these oscillations under only one set of feedback conditions. The results suggest that the SPL may belong to a putative beta-synchronized network for arm position maintenance and that position estimation may be subserved by different subsets of neurons within this network depending on available sensory information. In addition, the nature of the observed spiking variability suggests that models of multisensory interactions in the SPL should account for both Poisson-like and non-Poisson variability.

Date Created
2016-12-29
Agent