General Spatiotemporal Patterns of Urbanization: An Examination of 16 World Cities

128705-Thumbnail Image.png
Description

Urbanization is the most dramatic form of land use change that has profoundly influenced environmental and socioeconomic conditions around the world. To assess these impacts and promote urban sustainability, a better understanding of urbanization patterns is needed. Recent studies have

Urbanization is the most dramatic form of land use change that has profoundly influenced environmental and socioeconomic conditions around the world. To assess these impacts and promote urban sustainability, a better understanding of urbanization patterns is needed. Recent studies have suggested several spatiotemporal patterns of urbanization, but their generality is yet to be adequately tested with long-term data. Thus, the main goal of our study was two-fold: (1) to examine the spatiotemporal patterns of urbanization of 16 world cities over a period of 200 years (1800–2000); and (2) to test four prominent hypotheses of urbanization patterns. Using a set of landscape metrics, we quantified temporal changes in the urban landscape pattern of the 16 cities and examined the four hypotheses individually. Our results show that these cities exhibit several common urbanization patterns: the urban landscape becomes compositionally more diverse, structurally more fragmented and geometrically more complex as urbanization progresses. Our study also suggests that urbanization is a process of shifting dominance among three urban growth modes: infilling, edge expanding and leapfrogging. However, idiosyncrasies do exist for individual cities, as detailed attributes of urbanization patterns often depend on the environmental and socioeconomic settings of cities. In addition, the choice of specific landscape metrics and the scales of analysis both influence the urbanization patterns revealed. Our study examined the urbanization patterns, for the first time, on long-term and global scales. The findings shed new light on the patterns and processes of urbanization, with implications for future studies of the ecology, planning and sustainability of cities.

Date Created
2016-01-04
Agent

The Relationship Between Habitat Loss and Fragmentation During Urbanization: An Empirical Evaluation From 16 World Cities

128783-Thumbnail Image.png
Description

Urbanization results in habitat loss and habitat fragmentation concurrently, both influencing biodiversity and ecological processes. To evaluate these impacts, it is important to understand the relationships between habitat loss and habitat fragmentation per se (HLHF) during urbanization. The objectives of

Urbanization results in habitat loss and habitat fragmentation concurrently, both influencing biodiversity and ecological processes. To evaluate these impacts, it is important to understand the relationships between habitat loss and habitat fragmentation per se (HLHF) during urbanization. The objectives of this study were two-fold: 1) to quantify the different forms of the HLHF relationship during urbanization using multiple landscape metrics, and 2) to test the validity of the HLHF relations reported in the literature. Our analysis was based on a long-term urbanization dataset (1800–2000) of 16 large cities from around the world. Habitat area was represented as the percentage of non-built-up area in the landscape, while habitat fragmentation was measured using several landscape metrics. Our results show that the relationship between habitat loss and habitat fragmentation during urbanization is commonly monotonic—linear, exponential, or logarithmic, indicating that the degree of habitat fragmentation per se increases with habitat loss in general. We compared our results with 14 hypothesized HLHF relationships based on simulated landscapes found in the literature, and found that four of them were consistent with those of urbanization, whereas the other ten were not. Also, we identified six new HLHF relationships when fragmentation was measured by total core area, normalized total core area, patch density, edge density and landscape shape index, respectively. In addition, our study demonstrated that the “space-for-time” approach, frequently used in ecology and geography, generated specious HLHF relationships, suggesting that this approach is largely inappropriate for analyses of urban landscapes that are highly heterogeneous in space and unusually contingent in dynamics. Our results show both generalities and idiosyncrasies of the HLHF relationship, providing new insights for assessing ecological effects of urbanization.

Date Created
2016-04-28
Agent