Evaluating the effectiveness of tree locations and arrangements for improving urban thermal environment

155884-Thumbnail Image.png
Description

Trees serve as a natural umbrella to mitigate insolation absorbed by features of the urban environment, especially building structures and pavements. For a desert community, trees are a particularly valuable asset because they contribute to energy conservation efforts, improve home

Trees serve as a natural umbrella to mitigate insolation absorbed by features of the urban environment, especially building structures and pavements. For a desert community, trees are a particularly valuable asset because they contribute to energy conservation efforts, improve home values, allow for cost savings, and promote enhanced health and well-being. The main obstacle in creating a sustainable urban community in a desert city with trees is the scarceness and cost of irrigation water. Thus, strategically located and arranged desert trees with the fewest tree numbers possible potentially translate into significant energy, water and long-term cost savings as well as conservation, economic, and health benefits. The objective of this dissertation is to achieve this research goal with integrated methods from both theoretical and empirical perspectives.

This dissertation includes three main parts. The first part proposes a spatial optimization method to optimize the tree locations with the objective to maximize shade coverage on building facades and open structures and minimize shade coverage on building rooftops in a 3-dimensional environment. Second, an outdoor urban physical scale model with field measurement is presented to understand the cooling and locational benefits of tree shade. The third part implements a microclimate numerical simulation model to analyze how the specific tree locations and arrangements influence outdoor microclimates and improve human thermal comfort. These three parts of the dissertation attempt to fill the research gap of how to strategically locate trees at the building to neighborhood scale, and quantifying the impact of such arrangements.

Results highlight the significance of arranging residential shade trees across different geographical scales. In both the building and neighborhood scales, research results recommend that trees should be arranged in the central part of the building south front yard. More cooling benefits are provided to the building structures and outdoor microclimates with a cluster tree arrangement without canopy overlap; however, if residents are interested in creating a better outdoor thermal environment, open space between trees is needed to enhance the wind environment for better human thermal comfort. Considering the rapid urbanization process, limited water resources supply, and the severe heat stress in the urban areas, judicious design and planning of trees is of increasing importance for improving the life quality and sustaining the urban environment.

Date Created
2017
Agent

Rooftop Surface Temperature Analysis in an Urban Residential Environment

128663-Thumbnail Image.png
Description

The urban heat island (UHI) phenomenon is a significant worldwide problem caused by rapid population growth and associated urbanization. The UHI effect exacerbates heat waves during the summer, increases energy and water consumption, and causes the high risk of heat-related

The urban heat island (UHI) phenomenon is a significant worldwide problem caused by rapid population growth and associated urbanization. The UHI effect exacerbates heat waves during the summer, increases energy and water consumption, and causes the high risk of heat-related morbidity and mortality. UHI mitigation efforts have increasingly relied on wisely designing the urban residential environment such as using high albedo rooftops, green rooftops, and planting trees and shrubs to provide canopy coverage and shading. Thus, strategically designed residential rooftops and their surrounding landscaping have the potential to translate into significant energy, long-term cost savings, and health benefits. Rooftop albedo, material, color, area, slope, height, aspect and nearby landscaping are factors that potentially contribute. To extract, derive, and analyze these rooftop parameters and outdoor landscaping information, high resolution optical satellite imagery, LIDAR (light detection and ranging) point clouds and thermal imagery are necessary. Using data from the City of Tempe AZ (a 2010 population of 160,000 people), we extracted residential rooftop footprints and rooftop configuration parameters from airborne LIDAR point clouds and QuickBird satellite imagery (2.4 m spatial resolution imagery). Those parameters were analyzed against surface temperature data from the MODIS/ASTER airborne simulator (MASTER). MASTER images provided fine resolution (7 m) surface temperature data for residential areas during daytime and night time. Utilizing these data, ordinary least squares (OLS) regression was used to evaluate the relationships between residential building rooftops and their surface temperature in urban environment. The results showed that daytime rooftop temperature was closely related to rooftop spectral attributes, aspect, slope, and surrounding trees. Night time temperature was only influenced by rooftop spectral attributes and slope.

Date Created
2015-09-18
Agent

A MODIS/ASTER Airborne Simulator (MASTER) Imagery for Urban Heat Island Research

128681-Thumbnail Image.png
Description

Thermal imagery is widely used to quantify land surface temperatures to monitor the spatial extent and thermal intensity of the urban heat island (UHI) effect. Previous research has applied Landsat images, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images,

Thermal imagery is widely used to quantify land surface temperatures to monitor the spatial extent and thermal intensity of the urban heat island (UHI) effect. Previous research has applied Landsat images, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images, Moderate Resolution Imaging Spectroradiometer (MODIS) images, and other coarse- to medium-resolution remotely sensed imagery to estimate surface temperature. These data are frequently correlated with vegetation, impervious surfaces, and temperature to quantify the drivers of the UHI effect. Because of the coarse- to medium-resolution of the thermal imagery, researchers are unable to correlate these temperature data with the more generally available high-resolution land cover classification, which are derived from high-resolution multispectral imagery. The development of advanced thermal sensors with very high-resolution thermal imagery such as the MODIS/ASTER airborne simulator (MASTER) has investigators quantifying the relationship between detailed land cover and land surface temperature. While this is an obvious next step, the published literature, i.e., the MASTER data, are often used to discriminate burned areas, assess fire severity, and classify urban land cover. Considerably less attention is given to use MASTER data in the UHI research. We demonstrate here that MASTER data in combination with high-resolution multispectral data has made it possible to monitor and model the relationship between temperature and detailed land cover such as building rooftops, residential street pavements, and parcel-based landscaping. Here, we report on data sources to conduct this type of UHI research and endeavor to intrigue researchers and scientists such that high-resolution airborne thermal imagery is used to further explore the UHI effect.

Date Created
2016-06-06
Agent