Understanding adaptive behaviors in complex clinical environments

151020-Thumbnail Image.png
Description
Critical care environments are complex in nature. Fluctuating team dynamics and the plethora of technology and equipment create unforeseen demands on clinicians. Such environments become chaotic very quickly due to the chronic exposure to unpredictable clusters of events. In order

Critical care environments are complex in nature. Fluctuating team dynamics and the plethora of technology and equipment create unforeseen demands on clinicians. Such environments become chaotic very quickly due to the chronic exposure to unpredictable clusters of events. In order to cope with this complexity, clinicians tend to develop ad-hoc adaptations to function in an effective manner. It is these adaptations or "deviations" from expected behaviors that provide insight into the processes that shape the overall behavior of the complex system. The research described in this manuscript examines the cognitive basis of clinicians' adaptive mechanisms and presents a methodology for studying the same. Examining interactions in complex systems is difficult due to the disassociation between the nature of the environment and the tools available to analyze underlying processes. In this work, the use of a mixed methodology framework to study trauma critical care, a complex environment, is presented. The hybrid framework supplements existing methods of data collection (qualitative observations) with quantitative methods (use of electronic tags) to capture activities in the complex system. Quantitative models of activities (using Hidden Markov Modeling) and theoretical models of deviations were developed to support this mixed methodology framework. The quantitative activity models developed were tested with a set of fifteen simulated activities that represent workflow in trauma care. A mean recognition rate of 87.5% was obtained in automatically recognizing activities. Theoretical models, on the other hand, were developed using field observations of 30 trauma cases. The analysis of the classification schema (with substantial inter-rater reliability) and 161 deviations identified shows that expertise and role played by the clinician in the trauma team influences the nature of deviations made (p<0.01). The results shows that while expert clinicians deviate to innovate, deviations of novices often result in errors. Experts' flexibility and adaptiveness allow their deviations to generate innovative ideas, in particular when dynamic adjustments are required in complex situations. The findings suggest that while adherence to protocols and standards is important for novice practitioners to reduce medical errors and ensure patient safety, there is strong need for training novices in coping with complex situations as well.
Date Created
2012
Agent

Computational approaches for addressing complexity in biomedicine

150897-Thumbnail Image.png
Description
The living world we inhabit and observe is extraordinarily complex. From the perspective of a person analyzing data about the living world, complexity is most commonly encountered in two forms: 1) in the sheer size of the datasets that must

The living world we inhabit and observe is extraordinarily complex. From the perspective of a person analyzing data about the living world, complexity is most commonly encountered in two forms: 1) in the sheer size of the datasets that must be analyzed and the physical number of mathematical computations necessary to obtain an answer and 2) in the underlying structure of the data, which does not conform to classical normal theory statistical assumptions and includes clustering and unobserved latent constructs. Until recently, the methods and tools necessary to effectively address the complexity of biomedical data were not ordinarily available. The utility of four methods--High Performance Computing, Monte Carlo Simulations, Multi-Level Modeling and Structural Equation Modeling--designed to help make sense of complex biomedical data are presented here.
Date Created
2012
Agent

An informatics approach to establishing a sustainable public health community

150708-Thumbnail Image.png
Description
This work involved the analysis of a public health system, and the design, development and deployment of enterprise informatics architecture, and sustainable community methods to address problems with the current public health system. Specifically, assessment of the Nationally Notifiable Disease

This work involved the analysis of a public health system, and the design, development and deployment of enterprise informatics architecture, and sustainable community methods to address problems with the current public health system. Specifically, assessment of the Nationally Notifiable Disease Surveillance System (NNDSS) was instrumental in forming the design of the current implementation at the Southern Nevada Health District (SNHD). The result of the system deployment at SNHD was considered as a basis for projecting the practical application and benefits of an enterprise architecture. This approach has resulted in a sustainable platform to enhance the practice of public health by improving the quality and timeliness of data, effectiveness of an investigation, and reporting across the continuum.
Date Created
2012
Agent

BioEve: user interface framework bridging IE and IR

149307-Thumbnail Image.png
Description
Continuous advancements in biomedical research have resulted in the production of vast amounts of scientific data and literature discussing them. The ultimate goal of computational biology is to translate these large amounts of data into actual knowledge of the complex

Continuous advancements in biomedical research have resulted in the production of vast amounts of scientific data and literature discussing them. The ultimate goal of computational biology is to translate these large amounts of data into actual knowledge of the complex biological processes and accurate life science models. The ability to rapidly and effectively survey the literature is necessary for the creation of large scale models of the relationships among biomedical entities as well as hypothesis generation to guide biomedical research. To reduce the effort and time spent in performing these activities, an intelligent search system is required. Even though many systems aid in navigating through this wide collection of documents, the vastness and depth of this information overload can be overwhelming. An automated extraction system coupled with a cognitive search and navigation service over these document collections would not only save time and effort, but also facilitate discovery of the unknown information implicitly conveyed in the texts. This thesis presents the different approaches used for large scale biomedical named entity recognition, and the challenges faced in each. It also proposes BioEve: an integrative framework to fuse a faceted search with information extraction to provide a search service that addresses the user's desire for "completeness" of the query results, not just the top-ranked ones. This information extraction system enables discovery of important semantic relationships between entities such as genes, diseases, drugs, and cell lines and events from biomedical text on MEDLINE, which is the largest publicly available database of the world's biomedical journal literature. It is an innovative search and discovery service that makes it easier to search
avigate and discover knowledge hidden in life sciences literature. To demonstrate the utility of this system, this thesis also details a prototype enterprise quality search and discovery service that helps researchers with a guided step-by-step query refinement, by suggesting concepts enriched in intermediate results, and thereby facilitating the "discover more as you search" paradigm.
Date Created
2010
Agent