Informatics Approaches to Understand Data Sensitivity Perspectives of Patients with Behavioral Health Conditions

158317-Thumbnail Image.png
Description
Sensitive data sharing presents many challenges in case of unauthorized disclosures, including stigma and discrimination for patients with behavioral health conditions (BHCs). Sensitive information (e.g. mental health) warrants consent-based sharing to achieve integrated care. As many patients with BHCs receive

Sensitive data sharing presents many challenges in case of unauthorized disclosures, including stigma and discrimination for patients with behavioral health conditions (BHCs). Sensitive information (e.g. mental health) warrants consent-based sharing to achieve integrated care. As many patients with BHCs receive cross-organizational behavioral and physical health care, data sharing can improve care quality, patient-provider experiences, outcomes, and reduce costs. Granularity in data sharing further allows for privacy satisfaction. Though the subjectivity in information patients consider sensitive and related sharing preferences are rarely investigated. Research, federal policies, and recommendations demand a better understanding of patient perspectives of data sensitivity and sharing.

The goal of this research is to enhance the understanding of data sensitivity and related sharing preferences of patients with BHCs. The hypotheses are that 1) there is a diversity in medical record sensitivity and sharing preferences of patients with BHCs concerning the type of information, information recipients, and purpose of sharing; and 2) there is a mismatch between the existing sensitive data categories and the desires of patients with BHCs.

A systematic literature review on methods assessing sensitivity perspectives showed a lack of methodologies for characterizing patient perceptions of sensitivity and assessing the variations in perceptions from clinical interpretations. Novel informatics approaches were proposed and applied using patients’ medical records to assess data sensitivity, sharing perspectives and comparing those with healthcare providers’ views. Findings showed variations in perceived sensitivity and sharing preferences. Patients’ sensitivity perspectives often varied from standard clinical interpretations. Comparison of patients’ and providers’ views on data sensitivity found differences in sensitivity perceptions of patients. Patients’ experiences (family history as genetic data), stigma towards category definitions or labels (drug “abuse”), and self-perceptions of information applicability (alcohol dependency) were influential factors in patients’ sensitivity determination.

This clinical informatics research innovation introduces new methods using medical records to study data sensitivity and sharing. The outcomes of this research can guide the development of effective data sharing consent processes, education materials to inform patients and providers, granular technologies segmenting electronic health data, and policies and recommendations on sensitive data sharing.
Date Created
2020
Agent

Utilization of automated location tracking for clinical workflow analytics and visualization

156859-Thumbnail Image.png
Description
The analysis of clinical workflow offers many challenges to clinical stakeholders and researchers, especially in environments characterized by dynamic and concurrent processes. Workflow analysis in such environments is essential for monitoring performance and finding bottlenecks and sources of error. Clinical

The analysis of clinical workflow offers many challenges to clinical stakeholders and researchers, especially in environments characterized by dynamic and concurrent processes. Workflow analysis in such environments is essential for monitoring performance and finding bottlenecks and sources of error. Clinical workflow analysis has been enhanced with the inclusion of modern technologies. One such intervention is automated location tracking which is a system that detects the movement of clinicians and equipment. Utilizing the data produced from automated location tracking technologies can lead to the development of novel workflow analytics that can be used to complement more traditional approaches such as ethnography and grounded-theory based qualitative methods. The goals of this research are to: (i) develop a series of analytic techniques to derive deeper workflow-related insight in an emergency department setting, (ii) overlay data from disparate sources (quantitative and qualitative) to develop strategies that facilitate workflow redesign, and (iii) incorporate visual analytics methods to improve the targeted visual feedback received by providers based on the findings. The overarching purpose is to create a framework to demonstrate the utility of automated location tracking data used in conjunction with clinical data like EHR logs and its vital role in the future of clinical workflow analysis/analytics. This document is categorized based on two primary aims of the research. The first aim deals with the use of automated location tracking data to develop a novel methodological/exploratory framework for clinical workflow. The second aim is to overlay the quantitative data generated from the previous aim on data from qualitative observation and shadowing studies (mixed methods) to develop a deeper view of clinical workflow that can be used to facilitate workflow redesign. The final sections of the document speculate on the direction of this work where the potential of this research in the creation of fully integrated clinical environments i.e. environments with state-of-the-art location tracking and other data collection mechanisms, is discussed. The main purpose of this research is to demonstrate ways by which clinical processes can be continuously monitored allowing for proactive adaptations in the face of technological and process changes to minimize any negative impact on the quality of patient care and provider satisfaction.
Date Created
2018
Agent

Improving Usability and Adoption of Tablet-based Electronic Health Record (EHR) Applications

156121-Thumbnail Image.png
Description
The technological revolution has caused the entire world to migrate to a digital environment and health care is no exception to this. Electronic Health Records (EHR) or Electronic Medical Records (EMR) are the digital repository for health data of patients.

The technological revolution has caused the entire world to migrate to a digital environment and health care is no exception to this. Electronic Health Records (EHR) or Electronic Medical Records (EMR) are the digital repository for health data of patients. Nation wide efforts have been made by the federal government to promote the usage of EHRs as they have been found to improve quality of health service. Although EHR systems have been implemented almost everywhere, active use of EHR applications have not replaced paper documentation. Rather, they are often used to store transcribed data from paper documentation after each clinical procedure. This process is found to be prone to errors such as data omission, incomplete data documentation and is also time consuming. This research aims to help improve adoption of real-time EHRs usage while documenting data by improving the usability of an iPad based EHR application that is used during resuscitation process in the intensive care unit. Using Cognitive theories and HCI frameworks, this research identified areas of improvement and customizations in the application that were required to exclusively match the work flow of the resuscitation team at the Mayo Clinic. In addition to this, a Handwriting Recognition Engine (HRE) was integrated into the application to support a stylus based information input into EHR, which resembles our target users’ traditional pen and paper based documentation process. The EHR application was updated and then evaluated with end users at the Mayo clinic. The users found the application to be efficient, usable and they showed preference in using this application over the paper-based documentation.
Date Created
2018
Agent

Development and use of an iPad-based resuscitation code-blue sheet for improving resuscitation outcomes during intensive patient care

154054-Thumbnail Image.png
Description
The American Heart Association recommended in 1997 the data elements that should be collected from resuscitations in hospitals. (15) Currently, data documentation from resuscitation events in hospitals, termed ‘code blue’ events, utilizes a paper form, which is institution-specific. Problems with

The American Heart Association recommended in 1997 the data elements that should be collected from resuscitations in hospitals. (15) Currently, data documentation from resuscitation events in hospitals, termed ‘code blue’ events, utilizes a paper form, which is institution-specific. Problems with data capture and transcription exists, due to the challenges of dynamic documentation of patient, event and outcome variables as the code blue event unfolds.

This thesis is based on the hypothesis that an electronic version of code blue real-time data capture would lead to improved resuscitation data transcription, and enable clinicians to address deficiencies in quality of care. The primary goal of this thesis is to create an iOS based application, primarily designed for iPads, for code blue events at the Mayo Clinic Hospital. The secondary goal is to build an open-source software development framework for converting paper-based hospital protocols into digital format.

The tool created in this study enabled data documentation to be completed electronically rather than on paper for resuscitation outcomes. The tool was evaluated for usability with twenty nurses, the end-users, at Mayo Clinic in Phoenix, Arizona. The results showed the preference of users for the iPad application. Furthermore, a qualitative survey showed the clinicians perceived the electronic version to be more accurate and efficient than paper-based documentation, both of which are essential for an emergency code blue resuscitation procedure.
Date Created
2015
Agent

Contextual computing: tracking healthcare providers in the Emergency Department via Bluetooth beacons

153845-Thumbnail Image.png
Description
Hospital Emergency Departments (EDs) are frequently crowded. The Center for

Medicare and Medicaid Services (CMS) collects performance measurements from EDs

such as that of the door to clinician time. The door to clinician time is the time at which a

Hospital Emergency Departments (EDs) are frequently crowded. The Center for

Medicare and Medicaid Services (CMS) collects performance measurements from EDs

such as that of the door to clinician time. The door to clinician time is the time at which a

patient is first seen by a clinician. Current methods for documenting the door to clinician

time are in written form and may contain inaccuracies. The goal of this thesis is to

provide a method for automatic and accurate retrieval and documentation of the door to

clinician time. To automatically collect door to clinician times, single board computers

were installed in patient rooms that logged the time whenever they saw a specific

Bluetooth emission from a device that the clinician carried. The Bluetooth signal is used

to calculate the distance of the clinician from the single board computer. The logged time

and distance calculation is then sent to the server where it is determined if the clinician

was in the room seeing the patient at the time logged. The times automatically collected

were compared with the handwritten times recorded by clinicians and have shown that

they are justifiably accurate to the minute.
Date Created
2015
Agent

Informatics approach to improving surgical skills training

152165-Thumbnail Image.png
Description
Surgery as a profession requires significant training to improve both clinical decision making and psychomotor proficiency. In the medical knowledge domain, tools have been developed, validated, and accepted for evaluation of surgeons' competencies. However, assessment of the psychomotor skills still

Surgery as a profession requires significant training to improve both clinical decision making and psychomotor proficiency. In the medical knowledge domain, tools have been developed, validated, and accepted for evaluation of surgeons' competencies. However, assessment of the psychomotor skills still relies on the Halstedian model of apprenticeship, wherein surgeons are observed during residency for judgment of their skills. Although the value of this method of skills assessment cannot be ignored, novel methodologies of objective skills assessment need to be designed, developed, and evaluated that augment the traditional approach. Several sensor-based systems have been developed to measure a user's skill quantitatively, but use of sensors could interfere with skill execution and thus limit the potential for evaluating real-life surgery. However, having a method to judge skills automatically in real-life conditions should be the ultimate goal, since only with such features that a system would be widely adopted. This research proposes a novel video-based approach for observing surgeons' hand and surgical tool movements in minimally invasive surgical training exercises as well as during laparoscopic surgery. Because our system does not require surgeons to wear special sensors, it has the distinct advantage over alternatives of offering skills assessment in both learning and real-life environments. The system automatically detects major skill-measuring features from surgical task videos using a computing system composed of a series of computer vision algorithms and provides on-screen real-time performance feedback for more efficient skill learning. Finally, the machine-learning approach is used to develop an observer-independent composite scoring model through objective and quantitative measurement of surgical skills. To increase effectiveness and usability of the developed system, it is integrated with a cloud-based tool, which automatically assesses surgical videos upload to the cloud.
Date Created
2013
Agent

Understanding adaptive behaviors in complex clinical environments

151020-Thumbnail Image.png
Description
Critical care environments are complex in nature. Fluctuating team dynamics and the plethora of technology and equipment create unforeseen demands on clinicians. Such environments become chaotic very quickly due to the chronic exposure to unpredictable clusters of events. In order

Critical care environments are complex in nature. Fluctuating team dynamics and the plethora of technology and equipment create unforeseen demands on clinicians. Such environments become chaotic very quickly due to the chronic exposure to unpredictable clusters of events. In order to cope with this complexity, clinicians tend to develop ad-hoc adaptations to function in an effective manner. It is these adaptations or "deviations" from expected behaviors that provide insight into the processes that shape the overall behavior of the complex system. The research described in this manuscript examines the cognitive basis of clinicians' adaptive mechanisms and presents a methodology for studying the same. Examining interactions in complex systems is difficult due to the disassociation between the nature of the environment and the tools available to analyze underlying processes. In this work, the use of a mixed methodology framework to study trauma critical care, a complex environment, is presented. The hybrid framework supplements existing methods of data collection (qualitative observations) with quantitative methods (use of electronic tags) to capture activities in the complex system. Quantitative models of activities (using Hidden Markov Modeling) and theoretical models of deviations were developed to support this mixed methodology framework. The quantitative activity models developed were tested with a set of fifteen simulated activities that represent workflow in trauma care. A mean recognition rate of 87.5% was obtained in automatically recognizing activities. Theoretical models, on the other hand, were developed using field observations of 30 trauma cases. The analysis of the classification schema (with substantial inter-rater reliability) and 161 deviations identified shows that expertise and role played by the clinician in the trauma team influences the nature of deviations made (p<0.01). The results shows that while expert clinicians deviate to innovate, deviations of novices often result in errors. Experts' flexibility and adaptiveness allow their deviations to generate innovative ideas, in particular when dynamic adjustments are required in complex situations. The findings suggest that while adherence to protocols and standards is important for novice practitioners to reduce medical errors and ensure patient safety, there is strong need for training novices in coping with complex situations as well.
Date Created
2012
Agent