Membrane Protein Mimetic Dynamic DNA Nanostructures for Biosensing Applications

Description
Membrane proteins act as sensors, gatekeepers and information carriers in the cell membranes. Functional engineering of these proteins is important for the development of molecular tools for biosensing, therapeutics and as components of artificial cells. However, using protein engineering to

Membrane proteins act as sensors, gatekeepers and information carriers in the cell membranes. Functional engineering of these proteins is important for the development of molecular tools for biosensing, therapeutics and as components of artificial cells. However, using protein engineering to modify existing protein structures is challenging due to the limitations of structural changes and difficulty in folding polypeptides into defined protein structures. Recent studies have shown that nanoscale architectures created by DNA nanotechnology can be used to mimic various protein functions, including some membrane proteins. However, mimicking the highly sophisticated structural dynamics of membrane proteins by DNA nanostructures is still in its infancy, mainly due to lack of transmembrane DNA nanostructures that can mimic the dynamic behavior, ubiquitous to membrane proteins. Here, I demonstrate design of dynamic DNA nanostructures to mimic two important class of membrane proteins. First, I describe a DNA nanostructure that inserts through lipid membrane and dynamically reconfigures upon sensing a membrane-enclosed DNA or RNA target, thereby transducing biomolecular information across the lipid membrane similar to G-protein coupled receptors (GPCR’s). I use the non-destructive sensing property of our GPCR-mimetic nanodevice to sense cancer associated micro-RNA biomarkers inside exosomes without the need of RNA extraction and amplification. Second, I demonstrate a fully reversibly gated DNA nanopore that mimics the ligand mediated gating of ion channel proteins. The 20.4 X 20.4 nm-wide channel of the DNA nanopore allows timed delivery of folded proteins across synthetic and biological membranes. These studies represent early examples of dynamic DNA nanostructures in mimicking membrane protein functions. I envision that they will be used in synthetic biology to create artificial cells containing GPCR-like and ion channel-like receptors, in site-specific drug or vaccine delivery and highly sensitive biosensing applications.
Date Created
2021
Agent

Product Allocation and Capacity Planning Considering Product-Specific Flexibility for Automobile Manufacturing

161559-Thumbnail Image.png
Description
To maintain long term success, a manufacturing company should be managed and operated under the guidance of properly designed capacity, production and logistics plans that are formulated in coordination with its manufacturing footprint, so that its managerial goals on both

To maintain long term success, a manufacturing company should be managed and operated under the guidance of properly designed capacity, production and logistics plans that are formulated in coordination with its manufacturing footprint, so that its managerial goals on both strategic and tactical levels can be fulfilled. In particular, sufficient flexibility and efficiency should be ensured so that future customer demand can be met at a profit. This dissertation is motivated by an automobile manufacturer's mid-term and long-term decision problems, but applies to any multi-plant, multi-product manufacturer with evolving product portfolios and significant fixed and variable production costs. Via introducing the concepts of effective capacity and product-specific flexibility, two mixed integer programming (MIP) models are proposed to help manufacturers shape their mid-term capacity plans and long-term product allocation plans. With fixed tooling flexibility, production and logistics considerations are integrated into a mid-term capacity planning model to develop well-informed and balanced tactical plans, which utilize various capacity adjustment options to coordinate production, inventory, and shipping schedules throughout the planning horizon so that overall operational and capacity adjustment costs are minimized. For long-term product allocation planning, strategic tooling configuration plans that empower the production of multi-generation products at minimal configuration and operational costs are established for all plants throughout the planning horizon considering product-specific commonality and compatibility. New product introductions and demand uncertainty over the planning horizon are incorporated. As a result, potential production sites for each product and corresponding process flexibility are determined. An efficient heuristic method is developed and shown to perform well in solution quality and computational requirements.
Date Created
2021
Agent

Developing a Machine Learning Framework for Student Persistence Prediction

161413-Thumbnail Image.png
Description
Student retention is a critical metric for many universities whose intention is to support student success. The goal of this thesis is to create retention models utilizing machine learning (ML) techniques. The factors explored in this research include only those

Student retention is a critical metric for many universities whose intention is to support student success. The goal of this thesis is to create retention models utilizing machine learning (ML) techniques. The factors explored in this research include only those known during the admissions process. These models have two goals: first, to correctly predict as many non-returning students as possible, while minimizing the number of students who are falsely predicted as non-returning. Next, to identify important features in student retention and provide a practical explanation for a student's decision to no longer persist. The models are then used to provide outreach to students that need more support. The findings of this research indicate that the current top performing model is Adaboost which is able to successfully predict non-returning students with an accuracy of 54 percent.
Date Created
2021
Agent

DNA Nanotechnology for Protein Co-Crystallization & Vaccine Delivery

147652-Thumbnail Image.png
Description

DNA nanotechnology is ideally suited for numerous applications from the crystallization and solution of macromolecular structures to the targeted delivery of therapeutic molecules. The foundational goal of structural DNA nanotechnology was the development of a lattice to host proteins for

DNA nanotechnology is ideally suited for numerous applications from the crystallization and solution of macromolecular structures to the targeted delivery of therapeutic molecules. The foundational goal of structural DNA nanotechnology was the development of a lattice to host proteins for crystal structure solution. To further progress towards this goal, 36 unique four-armed DNA junctions were designed and crystallized for eventual solution of their 3D structures. While most of these junctions produced macroscale crystals which diffracted successfully, several prevented crystallization. Previous results used a fixed isomer and subsequent investigations adopted an alternate isomer to investigate the impact of these small sequence changes on the stability and structural properties of these crystals. DNA nanotechnology has also shown promise for a variety biomedical applications. In particular, DNA origami has been demonstrated as a promising tool for targeted and efficient delivery of drugs and vaccines due to their programmability and addressability to suit a variety of therapeutic cargo and biological functions. To this end, a previously designed DNA barrel nanostructure with a unique multimerizable pegboard architecture has been constructed and characterized via TEM for later evaluation of its stability under biological conditions for use in the targeted delivery of cargo, including CRISPR-containing adeno-associated viruses (AAVs) and mRNA.

Date Created
2021-05
Agent

RNA Aptamer-Based Systems for Pathogen Detection and Biomolecule Synthesis

158847-Thumbnail Image.png
Description
RNA aptamers adopt tertiary structures that enable them to bind to specific ligands. This capability has enabled aptamers to be used for a variety of diagnostic, therapeutic, and regulatory applications. This dissertation focuses on the use RNA aptamers in two

RNA aptamers adopt tertiary structures that enable them to bind to specific ligands. This capability has enabled aptamers to be used for a variety of diagnostic, therapeutic, and regulatory applications. This dissertation focuses on the use RNA aptamers in two biological applications: (1) nucleic acid diagnostic assays and (2) scaffolding of enzymatic pathways. First, sensors for detecting arbitrary target RNAs based the fluorogenic RNA aptamer Broccoli are designed and validated. Studies of three different sensor designs reveal that toehold-initiated Broccoli-based aptasensors provide the lowest signal leakage and highest signal intensity in absence and in presence of the target RNA, respectively. This toehold-initiated design is used for developing aptasensors targeting pathogens. Diagnostic assays for detecting pathogen nucleic acids are implemented by integrating Broccoli-based aptasensors with isothermal amplification methods. When coupling with recombinase polymerase amplification (RPA), aptasensors enable detection of synthetic valley fever DNA down to concentrations of 2 fM. Integration of Broccoli-based aptasensors with nucleic acid sequence-based amplification (NASBA) enables as few as 120 copies/mL of synthetic dengue RNA to be detected in reactions taking less than three hours. Moreover, the aptasensor-NASBA assay successfully detects dengue RNA in clinical samples. Second, RNA scaffolds containing peptide-binding RNA aptamers are employed for programming the synthesis of nonribosomal peptides (NRPs). Using the NRP enterobactin pathway as a model, RNA scaffolds are developed to direct the assembly of the enzymes entE, entB, and entF from E. coli, along with the aryl-carrier protein dhbB from B. subtilis. These scaffolds employ X-shaped RNA motifs from bacteriophage packaging motors, kissing loop interactions from HIV, and peptide-binding RNA aptamers to position peptide-modified NRP enzymes. The resulting RNA scaffolds functionalized with different aptamers are designed and evaluated for in vitro production of enterobactin. The best RNA scaffold provides a 418% increase in enterobactin production compared with the system in absence of the RNA scaffold. Moreover, the chimeric scaffold, with E. coli and B. subtilis enzymes, reaches approximately 56% of the activity of the wild-type enzyme assembly. The studies presented in this dissertation will be helpful for future development of nucleic acid-based assays and for controlling protein interaction for NRPs biosynthesis.
Date Created
2020
Agent

Bayesian-Entropy Method for Probabilistic Diagnostics and Prognostics of Engineering Systems

158710-Thumbnail Image.png
Description
Information exists in various forms and a better utilization of the available information can benefit the system awareness and response predictions. The focus of this dissertation is on the fusion of different types of information using Bayesian-Entropy method. The Maximum

Information exists in various forms and a better utilization of the available information can benefit the system awareness and response predictions. The focus of this dissertation is on the fusion of different types of information using Bayesian-Entropy method. The Maximum Entropy method in information theory introduces a unique way of handling information in the form of constraints. The Bayesian-Entropy (BE) principle is proposed to integrate the Bayes’ theorem and Maximum Entropy method to encode extra information. The posterior distribution in Bayesian-Entropy method has a Bayesian part to handle point observation data, and an Entropy part that encodes constraints, such as statistical moment information, range information and general function between variables. The proposed method is then extended to its network format as Bayesian Entropy Network (BEN), which serves as a generalized information fusion tool for diagnostics, prognostics, and surrogate modeling.

The proposed BEN is demonstrated and validated with extensive engineering applications. The BEN method is first demonstrated for diagnostics of gas pipelines and metal/composite plates for damage diagnostics. Both empirical knowledge and physics model are integrated with direct observations to improve the accuracy for diagnostics and to reduce the training samples. Next, the BEN is demonstrated in prognostics and safety assessment in air traffic management system. Various information types, such as human concepts, variable correlation functions, physical constraints, and tendency data, are fused in BEN to enhance the safety assessment and risk prediction in the National Airspace System (NAS). Following this, the BE principle is applied in surrogate modeling. Multiple algorithms are proposed based on different type of information encoding, such as Bayesian-Entropy Linear Regression (BELR), Bayesian-Entropy Semiparametric Gaussian Process (BESGP), and Bayesian-Entropy Gaussian Process (BEGP) are demonstrated with numerical toy problems and practical engineering analysis. The results show that the major benefits are the superior prediction/extrapolation performance and significant reduction of training samples by using additional physics/knowledge as constraints. The proposed BEN offers a systematic and rigorous way to incorporate various information sources. Several major conclusions are drawn based on the proposed study.
Date Created
2020
Agent

Real-time Analysis and Control for Smart Manufacturing Systems

158682-Thumbnail Image.png
Description
Recent advances in manufacturing system, such as advanced embedded sensing, big data analytics and IoT and robotics, are promising a paradigm shift in the manufacturing industry towards smart manufacturing systems. Typically, real-time data is available in many industries, such as

Recent advances in manufacturing system, such as advanced embedded sensing, big data analytics and IoT and robotics, are promising a paradigm shift in the manufacturing industry towards smart manufacturing systems. Typically, real-time data is available in many industries, such as automotive, semiconductor, and food production, which can reflect the machine conditions and production system’s operation performance. However, a major research gap still exists in terms of how to utilize these real-time data information to evaluate and predict production system performance and to further facilitate timely decision making and production control on the factory floor. To tackle these challenges, this dissertation takes on an integrated analytical approach by hybridizing data analytics, stochastic modeling and decision making under uncertainty methodology to solve practical manufacturing problems.

Specifically, in this research, the machine degradation process is considered. It has been shown that machines working at different operating states may break down in different probabilistic manners. In addition, machines working in worse operating stage are more likely to fail, thus causing more frequent down period and reducing the system throughput. However, there is still a lack of analytical methods to quantify the potential impact of machine condition degradation on the overall system performance to facilitate operation decision making on the factory floor. To address these issues, this dissertation considers a serial production line with finite buffers and multiple machines following Markovian degradation process. An integrated model based on the aggregation method is built to quantify the overall system performance and its interactions with machine condition process. Moreover, system properties are investigated to analyze the influence of system parameters on system performance. In addition, three types of bottlenecks are defined and their corresponding indicators are derived to provide guidelines on improving system performance. These methods provide quantitative tools for modeling, analyzing, and improving manufacturing systems with the coupling between machine condition degradation and productivity given the real-time signals.
Date Created
2020
Agent

Queueing Network Models for Performance Evaluation of Dynamic Multi-Product Manufacturing Systems

158541-Thumbnail Image.png
Description
Modern manufacturing systems are part of a complex supply chain where customer preferences are constantly evolving. The rapidly evolving market demands manufacturing organizations to be increasingly agile and flexible. Medium term capacity planning for manufacturing systems employ queueing network models

Modern manufacturing systems are part of a complex supply chain where customer preferences are constantly evolving. The rapidly evolving market demands manufacturing organizations to be increasingly agile and flexible. Medium term capacity planning for manufacturing systems employ queueing network models based on stationary demand assumptions. However, these stationary demand assumptions are not very practical for rapidly evolving supply chains. Nonstationary demand processes provide a reasonable framework to capture the time-varying nature of modern markets. The analysis of queues and queueing networks with time-varying parameters is mathematically intractable. In this dissertation, heuristics which draw upon existing steady state queueing results are proposed to provide computationally efficient approximations for dynamic multi-product manufacturing systems modeled as time-varying queueing networks with multiple customer classes (product types). This dissertation addresses the problem of performance evaluation of such manufacturing systems.

This dissertation considers the two key aspects of dynamic multi-product manufacturing systems - namely, performance evaluation and optimal server resource allocation. First, the performance evaluation of systems with infinite queueing room and a first-come first-serve service paradigm is considered. Second, systems with finite queueing room and priorities between product types are considered. Finally, the optimal server allocation problem is addressed in the context of dynamic multi-product manufacturing systems. The performance estimates developed in the earlier part of the dissertation are leveraged in a simulated annealing algorithm framework to obtain server resource allocations.
Date Created
2020
Agent

Simultaneous Material Microstructure Classification and Discovery using Acoustic Emission Signals

158338-Thumbnail Image.png
Description
Acoustic emission (AE) signals have been widely employed for tracking material properties and structural characteristics. In this study, the aim is to analyze the AE signals gathered during a scanning probe lithography process to classify the known microstructure types and

Acoustic emission (AE) signals have been widely employed for tracking material properties and structural characteristics. In this study, the aim is to analyze the AE signals gathered during a scanning probe lithography process to classify the known microstructure types and discover unknown surface microstructures/anomalies. To achieve this, a Hidden Markov Model is developed to consider the temporal dependency of the high-resolution AE data. Furthermore, the posterior classification probability and the negative likelihood score for microstructure classification and discovery are computed. Subsequently, a diagnostic procedure to identify the dominant AE frequencies that were used to track the microstructural characteristics is presented. In addition, machine learning methods such as KNN, Naive Bayes, and Logistic Regression classifiers are applied. Finally, the proposed approach applied to identify the surface microstructures of additively manufactured Ti-6Al-4V and show that it not only achieved a high classification accuracy (e.g., more than 90\%) but also correctly identified the microstructural anomalies that may be subjected to further investigation to discover new material phases/properties.
Date Created
2020
Agent

Biomarker Discovery for Alzheimer’s Disease Using NAPPA and In Vivo Crystallization in Baculovirus-Infected Insect Cells for Structural Biology

158275-Thumbnail Image.png
Description
Proteins are a large collection of biomolecules that orchestrate the vital

cellular processes of life. The last decade has witnessed dramatic advances in the

field of proteomics, which broadly include characterizing the composition, structure,

functions, interactions, and modifications of numerous proteins in biological

Proteins are a large collection of biomolecules that orchestrate the vital

cellular processes of life. The last decade has witnessed dramatic advances in the

field of proteomics, which broadly include characterizing the composition, structure,

functions, interactions, and modifications of numerous proteins in biological systems,

and elucidating how the miscellaneous components collectively contribute to the

phenotypes associated with various disorders. Such large-scale proteomics studies

have steadily gained momentum with the evolution of diverse high-throughput

technologies. This work illustrates the development of novel high-throughput

proteomics platforms and their applications in translational and structural biology. In

Chapter 1, nucleic acid programmable protein arrays displaying the human

proteomes were applied to immunoprofiling of paired serum and cerebrospinal fluid

samples from patients with Alzheimer’s disease. This high-throughput

immunoproteomic approach allows us to investigate the global antibody responses

associated with Alzheimer’s disease and potentially identify the diagnostic

autoantibody biomarkers. In Chapter 2, a versatile proteomic pipeline based on the

baculovirus-insect cell expression system was established to enable high-throughput

gene cloning, protein production, in vivo crystallization and sample preparation for Xray diffraction. In conjunction with the advanced crystallography methods, this endto-end pipeline promises to substantially facilitate the protein structural

determination. In Chapter 3, modified nucleic acid programmable protein arrays

were developed and used for probing protein-protein interactions at the proteome

level. From the perspective of biomarker discovery, structural proteomics, and

protein interaction networks, this work demonstrated the power of high-throughput

proteomics technologies in myriad applications for proteome-scale structural,

functional, and biomedical research.
Date Created
2020
Agent