Catalytic Hydrogen Evolution by Fe(II) Carbonyls Featuring a Dithiolate and a Chelating Phosphine

129517-Thumbnail Image.png
Description

Two pentacoordinate mononuclear iron carbonyls of the form (bdt)Fe(CO)P2 [bdt = benzene-1,2-dithiolate; P2 = 1,1′-diphenylphosphinoferrocene (1) or methyl-2-{bis(diphenylphosphinomethyl)amino}acetate (2)] were prepared as functional, biomimetic models for the distal iron (Fed) of the active site of [FeFe]-hydrogenase. X-ray crystal structures of

Two pentacoordinate mononuclear iron carbonyls of the form (bdt)Fe(CO)P2 [bdt = benzene-1,2-dithiolate; P2 = 1,1′-diphenylphosphinoferrocene (1) or methyl-2-{bis(diphenylphosphinomethyl)amino}acetate (2)] were prepared as functional, biomimetic models for the distal iron (Fed) of the active site of [FeFe]-hydrogenase. X-ray crystal structures of the complexes reveal that, despite similar ν(CO) stretching band frequencies, the two complexes have different coordination geometries. In X-ray crystal structures, the iron center of 1 is in a distorted trigonal bipyramidal arrangement, and that of 2 is in a distorted square pyramidal geometry. Electrochemical investigation shows that both complexes catalyze electrochemical proton reduction from acetic acid at mild overpotential, 0.17 and 0.38 V for 1 and 2, respectively. Although coordinatively unsaturated, the complexes display only weak, reversible binding affinity toward CO (1 bar). However, ligand centered protonation by the strong acid, HBF4·OEt2, triggers quantitative CO uptake by 1 to form a dicarbonyl analogue [1(H)-CO]+ that can be reversibly converted back to 1 by deprotonation using NEt3. Both crystallographically determined distances within the bdt ligand and density functional theory calculations suggest that the iron centers in both 1 and 2 are partially reduced at the expense of partial oxidation of the bdt ligand. Ligand protonation interrupts this extensive electronic delocalization between the Fe and bdt making 1(H)+ susceptible to external CO binding.

Date Created
2014-09-01
Agent

Electromechanical properties of single molecule devices

153071-Thumbnail Image.png
Description
Understanding the interplay between the electrical and mechanical properties of single molecules is of fundamental importance for molecular electronics. The sensitivity of charge transport to mechanical fluctuations is a key problem in developing long lasting molecular devices. Furthermore, harnessing this

Understanding the interplay between the electrical and mechanical properties of single molecules is of fundamental importance for molecular electronics. The sensitivity of charge transport to mechanical fluctuations is a key problem in developing long lasting molecular devices. Furthermore, harnessing this response to mechanical perturbation, molecular devices which can be mechanically gated can be developed. This thesis demonstrates three examples of the unique electromechanical properties of single molecules.

First, the electromechanical properties of 1,4-benzenedithiol molecular junctions are investigate. Counterintuitively, the conductance of this molecule is found to increase by more than an order of magnitude when stretched. This conductance increase is found to be reversible when the molecular junction is compressed. The current-voltage, conductance-voltage and inelastic electron tunneling spectroscopy characteristics are used to attribute the conductance increase to a strain-induced shift in the frontier molecular orbital relative to the electrode Fermi level, leading to resonant enhancement in the conductance.

Next, the effect of stretching-induced structural changes on charge transport in DNA molecules is studied. The conductance of single DNA molecules with lengths varying from 6 to 26 base pairs is measured and found to follow a hopping transport mechanism. The conductance of DNA molecules is highly sensitive to mechanical stretching, showing an abrupt decrease in conductance at surprisingly short stretching distances, with weak dependence on DNA length. This abrupt conductance decrease is attributed to force-induced breaking of hydrogen bonds in the base pairs at the end of the DNA sequence.

Finally, the effect of small mechanical modulation of the base separation on DNA conductance is investigated. The sensitivity of conductance to mechanical modulation is studied for molecules of different sequence and length. Sequences with purine-purine stacking are found to be more responsive to modulation than purine-pyrimidine sequences. This sensitivity is attributed to the perturbation of &pi-&pi stacking interactions and resulting effects on the activation energy and electronic coupling for the end base pairs.
Date Created
2014
Agent

Experimental and computational studies on the design of dyes for water-splitting dye-sensitized photoelectrochemical tandem cells

152655-Thumbnail Image.png
Description
Solar energy is a promising alternative for addressing the world's current and future energy requirements in a sustainable way. Because solar irradiation is intermittent, it is necessary to store this energy in the form of a fuel so it can

Solar energy is a promising alternative for addressing the world's current and future energy requirements in a sustainable way. Because solar irradiation is intermittent, it is necessary to store this energy in the form of a fuel so it can be used when required. The light-driven splitting of water into oxygen and hydrogen (a useful chemical fuel) is a fascinating theoretical and experimental challenge that is worth pursuing because the advance of the knowledge that it implies and the availability of water and sunlight. Inspired by natural photosynthesis and building on previous work from our laboratory, this dissertation focuses on the development of water-splitting dye-sensitized photoelectrochemical tandem cells (WSDSPETCs). The design, synthesis, and characterization of high-potential porphyrins and metal-free phthalocyanines with phosphonic anchoring groups are reported. Photocurrents measured for WSDSPETCs made with some of these dyes co-adsorbed with molecular or colloidal catalysts on TiO2 electrodes are reported as well. To guide in the design of new molecules we have used computational quantum chemistry extensively. Linear correlations between calculated frontier molecular orbital energies and redox potentials were built and tested at multiple levels of theory (from semi-empirical methods to density functional theory). Strong correlations (with r2 values > 0.99) with very good predictive abilities (rmsd < 50 mV) were found when using density functional theory (DFT) combined with a continuum solvent model. DFT was also used to aid in the elucidation of the mechanism of the thermal relaxation observed for the charge-separated state of a molecular triad that mimics the photo-induced proton coupled electron transfer of the tyrosine-histidine redox relay in the reaction center of Photosystem II. It was found that the inclusion of explicit solvent molecules, hydrogen bonded to specific sites within the molecular triad, was essential to explain the observed thermal relaxation. These results are relevant for both advancing the knowledge about natural photosynthesis and for the future design of new molecules for WSDSPETCs.
Date Created
2014
Agent

Simple and accurate correlation of experimental redox potentials and DFT-calculated HOMO/LUMO energies of polycyclic aromatic hydrocarbons

130434-Thumbnail Image.png
Description
The ability to accurately predict the oxidation and reduction potentials of molecules is very useful in various fields and applications. Quantum mechanical calculations can be used to access this information, yet sometimes the usefulness of these calculations can be limited

The ability to accurately predict the oxidation and reduction potentials of molecules is very useful in various fields and applications. Quantum mechanical calculations can be used to access this information, yet sometimes the usefulness of these calculations can be limited because of the computational requirements for large systems. Methodologies that yield strong linear correlations between calculations and experimental data have been reported, however the balance between accuracy and computational cost is always a major issue. In this work, linear correlations (with an R-2 value of up to 0.9990) between DFT-calculated HOMO/LUMO energies and 70 redox potentials from a series of 51 polycyclic aromatic hydrocarbons (obtained from the literature) are presented. The results are compared to previously reported linear correlations that were obtained with a more expensive computational methodology based on a Born-Haber thermodynamic cycle. It is shown in this article that similar or better correlations can be obtained with a simple and cheaper calculation.
Date Created
2013-10-28
Agent

Contact and length dependent effects in single-molecule electronics

152038-Thumbnail Image.png
Description
Understanding charge transport in single molecules covalently bonded to electrodes is a fundamental goal in the field of molecular electronics. In the past decade, it has become possible to measure charge transport on the single-molecule level using the STM break

Understanding charge transport in single molecules covalently bonded to electrodes is a fundamental goal in the field of molecular electronics. In the past decade, it has become possible to measure charge transport on the single-molecule level using the STM break junction method. Measurements on the single-molecule level shed light on charge transport phenomena which would otherwise be obfuscated by ensemble measurements of groups of molecules. This thesis will discuss three projects carried out using STM break junction. In the first project, the transition between two different charge transport mechanisms is reported in a set of molecular wires. The shortest wires show highly length dependent and temperature invariant conductance behavior, whereas the longer wires show weakly length dependent and temperature dependent behavior. This trend is consistent with a model whereby conduction occurs by coherent tunneling in the shortest wires and by incoherent hopping in the longer wires. Measurements are supported with calculations and the evolution of the molecular junction during the pulling process is investigated. The second project reports controlling the formation of single-molecule junctions by means of electrochemically reducing two axial-diazonium terminal groups on a molecule, thereby producing direct Au-C covalent bonds in-situ between the molecule and gold electrodes. Step length analysis shows that the molecular junction is significantly more stable, and can be pulled over a longer distance than a comparable junction created with amine anchoring bonds. The stability of the junction is explained by the calculated lower binding energy associated with the direct Au-C bond compared with the Au-N bond. Finally, the third project investigates the role that molecular conformation plays in the conductance of oligothiophene single-molecule junctions. Ethyl substituted oligothiophenes were measured and found to exhibit temperature dependent conductance and transition voltage for molecules with between two and six repeat units. While the molecule with only one repeat unit shows temperature invariant behavior. Density functional theory calculations show that at higher temperatures the oligomers with multiple repeat units assume a more planar conformation, which increases the conjugation length and decreases the effective energy barrier of the junction.
Date Created
2013
Agent

Electrostatic properties of water at interfaces with nanoscale solutes

151158-Thumbnail Image.png
Description
Molecular dynamics simulations were used to study properties of water at the interface with nanometer-size solutes. We simulated nonpolar attractive Kihara cavities given by a Lennard-Jones potential shifted by a core radius. The dipolar response of the hydration layer to

Molecular dynamics simulations were used to study properties of water at the interface with nanometer-size solutes. We simulated nonpolar attractive Kihara cavities given by a Lennard-Jones potential shifted by a core radius. The dipolar response of the hydration layer to a uniform electric field substantially exceeds that of the bulk. For strongly attractive solutes, the collective dynamics of the hydration layer become slow compared to bulk water, as the solute size is increased. The statistics of electric field fluctuations at the solute center are Gaussian and tend toward the dielectric continuum limit with increasing solute size. A dipolar probe placed at the center of the solute is sensitive neither to the polarity excess nor to the slowed dynamics of the hydration layer. A point dipole was introduced close to the solute-water interface to further study the statistics of electric field fluctuations generated by the water. For small dipole magnitudes, the free energy surface is single-welled, with approximately Gaussian statistics. When the dipole is increased, the free energy surface becomes double-welled, before landing in an excited state, characterized again by a single-welled surface. The intermediate region is fairly broad and is characterized by electrostatic fluctuations significantly in excess of the prediction of linear response. We simulated a solute having the geometry of C180 fullerene, with dipoles introduced on each carbon. For small dipole moments, the solvent response follows the results seen for a single dipole; but for larger dipole magnitudes, the fluctuations of the solute-solvent energy pass through a second maximum. The juxtaposition of the two transitions leads to an approximately cubic scaling of the chemical potential with the dipole strengh. Umbrella sampling techniques were used to generate free energy surfaces of the electric potential fluctuations at the heme iron in Cytochrome B562. The results were unfortunately inconclusive, as the ionic background was not effectively represented in the finite-size system.
Date Created
2012
Agent