Tremendous phenotypic variation exists across people with Turner syndrome (45,X). This variation likely stems from differential dosage of genes on the X chromosome. X-inactivation is the process whereby all X chromosomes in excess of one are silenced. However, about 15%…
Tremendous phenotypic variation exists across people with Turner syndrome (45,X). This variation likely stems from differential dosage of genes on the X chromosome. X-inactivation is the process whereby all X chromosomes in excess of one are silenced. However, about 15% of the genes on the silenced X chromosome escape this inactivation and are candidates for affecting phenotype in people with Turner syndrome. In this study we take an evolutionary approach to rank candidate genes that may contribute to phenotypic variation among people with Turner Syndrome. We incorporate analysis of patterns of DNA methylation from 46,XX and 45,X individuals, and estimates of variable X-inactivation status across 46,XX individuals, with patterns of gene expression conservation on the X chromosomes across five tissues and ten species. We find that genes that escape XCI are possible candidate genes for Turner syndrome phenotype, indicated by the constant levels of expression in escape genes and inactivated genes. Variation in these genes is expected to affect phenotype when dosage is altered from typical levels.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Male mutation bias, when more mutations are passed on via the male germline than via the female germline, is observed across mammals. One common way to infer the magnitude of male mutation bias, α, is to compare levels of neutral…
Male mutation bias, when more mutations are passed on via the male germline than via the female germline, is observed across mammals. One common way to infer the magnitude of male mutation bias, α, is to compare levels of neutral sequence divergence between genomic regions that spend different amounts of time in the male and female germline. For great apes, including human, we show that estimates of divergence are reduced in putatively unconstrained regions near genes relative to unconstrained regions far from genes. Divergence increases with increasing distance from genes on both the X chromosome and autosomes, but increases faster on the X chromosome than autosomes. As a result, ratios of X/A divergence increase with increasing distance from genes and corresponding estimates of male mutation bias are significantly higher in intergenic regions near genes versus far from genes. Future studies in other species will need to carefully consider the effect that genomic location will have on estimates of male mutation bias.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)