Integrating Time-Frequency and Machine Learning Methods for Tracking In Radar and Communications Coexisting Systems

171737-Thumbnail Image.png
Description
Increased demand on bandwidth has resulted in wireless communications and radar systems sharing spectrum. As signal transmissions from both modalities coexist, methodologies must be designed to reduce the induced interference from each system. This work considers the problem of tracking

Increased demand on bandwidth has resulted in wireless communications and radar systems sharing spectrum. As signal transmissions from both modalities coexist, methodologies must be designed to reduce the induced interference from each system. This work considers the problem of tracking an object using radar measurements embedded in noise and corrupted from transmissions of multiple communications users. Radar received signals in low noise can be successively processed to estimate object parameters maximum likelihood estimation. For linear frequency-modulated (LFM) signals, such estimates can be efficiently computed by integrating the Wigner distribution along lines in the time-frequency (TF) plane. However, the presence of communications interference highly reduces estimation performance.This thesis proposes a new approach to increase radar estimation performance by integrating a highly-localized TF method with data clustering. The received signal is first decomposed into highly localized Gaussians using the iterative matching pursuit decomposition (MPD). As the MPD is iterative, high noise levels can be reduced by appropriately selecting the algorithm’s stopping criteria. The decomposition also provides feature vectors of reduced dimensionality that can be used for clustering using a Gaussian mixture model (GMM). The proposed estimation method integrates along lines of a modified Wigner distribution of the Gaussian clusters in the TF plane. Using simulations, the object parameter estimation performance of the MPD is shown to highly improve when the MPD is integrated with GMM clustering.
Date Created
2022
Agent

Machine Learning Methods for Prediction of Physical System Behavior

171654-Thumbnail Image.png
Description
The advancement and marked increase in the use of computing devices in health care for large scale and personal medical use has transformed the field of medicine and health care into a data rich domain. This surge in the availability

The advancement and marked increase in the use of computing devices in health care for large scale and personal medical use has transformed the field of medicine and health care into a data rich domain. This surge in the availability of data has allowed domain experts to investigate, study and discover inherent patterns in diseases from new perspectives and in turn, further the field of medicine. Storage and analysis of this data in real time aids in enhancing the response time and efficiency of doctors and health care specialists. However, due to the time critical nature of most life- threatening diseases, there is a growing need to make informed decisions prior to the occurrence of any fatal outcome. Alongside time sensitivity, analyzing data specific to diseases and their effects on an individual basis leads to more efficient prognosis and rapid deployment of cures. The primary challenge in addressing both of these issues arises from the time varying and time sensitive nature of the data being studied and in the ability to successfully predict anomalous events using only observed data.This dissertation introduces adaptive machine learning algorithms that aid in the prediction of anomalous situations arising due to abnormalities present in patients diagnosed with certain types of diseases. Emphasis is given to the adaptation and development of algorithms based on an individual basis to further the accuracy of all predictions made. The main objectives are to learn the underlying representation of the data using empirical methods and enhance it using domain knowledge. The learned model is then utilized as a guide for statistical machine learning methods to predict the occurrence of anomalous events in the near future. Further enhancement of the learned model is achieved by means of tuning the objective function of the algorithm to incorporate domain knowledge. Along with anomaly forecasting using multi-modal data, this dissertation also investigates the use of univariate time series data towards the prediction of onset of diseases using Bayesian nonparametrics.
Date Created
2022
Agent

Reconfigurable RF Transmitters for C-Band and X-Band: Design, Development and Testing

171630-Thumbnail Image.png
Description
This thesis covers the design, development and testing of two high-power radio frequency transmitters that operate in C-band and X-band (System-C/X). The operational bands of System-C/X are 3-6 GHz and 8-11 GHz, respectively. Each system is designed to produce a

This thesis covers the design, development and testing of two high-power radio frequency transmitters that operate in C-band and X-band (System-C/X). The operational bands of System-C/X are 3-6 GHz and 8-11 GHz, respectively. Each system is designed to produce a peak effective isotropic radiated power of at least 50 dBW. The transmitters use parabolic dish antennas with dual-linear polarization feeds that can be steered over a wide range of azimuths and elevations with a precision of a fraction of a degree. System-C/X's transmit waveforms are generated using software-defined radios. The software-defined radio software is lightweight and reconfigurable. New waveforms can be loaded into the system during operation and saved to an onboard database. The waveform agility of the two systems lends them to potential uses in a wide range of broadcasting applications, including radar and communications. The effective isotropic radiated power and beam patterns for System-C/X were measured during two field test events in July 2021 and January 2022. The performance of both systems was found to be within acceptable limits of their design specifications.
Date Created
2022
Agent

Measurement, Detection, and Parameter Estimation of Single Photon Correlations

168844-Thumbnail Image.png
Description
The continuous time-tagging of photon arrival times for high count rate sources isnecessary for applications such as optical communications, quantum key encryption, and astronomical measurements. Detection of Hanbury-Brown and Twiss (HBT) single photon correlations from thermal sources, such as stars, requires a

The continuous time-tagging of photon arrival times for high count rate sources isnecessary for applications such as optical communications, quantum key encryption, and astronomical measurements. Detection of Hanbury-Brown and Twiss (HBT) single photon correlations from thermal sources, such as stars, requires a combination of high dynamic range, long integration times, and low systematics in the photon detection and time tagging system. The continuous nature of the measurements and the need for highly accurate timing resolution requires a customized time-to-digital converter (TDC). A custom built, two-channel, field programmable gate array (FPGA)-based TDC capable of continuously time tagging single photons with sub clock cycle timing resolution was characterized. Auto-correlation and cross-correlation measurements were used to constrain spurious systematic effects in the pulse count data as a function of system variables. These variables included, but were not limited to, incident photon count rate, incoming signal attenuation, and measurements of fixed signals. Additionally, a generalized likelihood ratio test using maximum likelihood estimators (MLEs) was derived as a means to detect and estimate correlated photon signal parameters. The derived GLRT was capable of detecting correlated photon signals in a laboratory setting with a high degree of statistical confidence. A proof is presented in which the MLE for the amplitude of the correlated photon signal is shown to be the minimum variance unbiased estimator (MVUE). The fully characterized TDC was used in preliminary measurements of astronomical sources using ground based telescopes. Finally, preliminary theoretical groundwork is established for the deep space optical communications system of the proposed Breakthrough Starshot project, in which low-mass craft will travel to the Alpha Centauri system to collect scientific data from Proxima B. This theoretical groundwork utilizes recent and upcoming space based optical communication systems as starting points for the Starshot communication system.
Date Created
2022
Agent

Does Human Speech Follow Benford's Law

168796-Thumbnail Image.png
Description
Researchers have observed that the frequencies of leading digits in many man-made and naturally occurring datasets follow a logarithmic curve, with digits that start with the number 1 accounting for 30% of all numbers in the dataset and digits that

Researchers have observed that the frequencies of leading digits in many man-made and naturally occurring datasets follow a logarithmic curve, with digits that start with the number 1 accounting for 30% of all numbers in the dataset and digits that start with the number 9 accounting for 5% of all numbers in the dataset. This phenomenon, known as Benford's Law, is highly repeatable and appears in lists of numbers from electricity bills, stock prices, tax returns, house prices, death rates, lengths of rivers, and naturally occurring images. This paper will demonstrate that human speech spectra also follow Benford's Law. This observation is used to motivate a new set of features that can be efficiently extracted from speech and demonstrate that these features can be used to classify between human speech and synthetic speech.
Date Created
2022
Agent

Health Management of Complex Systems Integrating Multisource Sensing, Nondestructive Evaluation, and Machine Learning

168296-Thumbnail Image.png
Description
Structural/system health monitoring (SHM) and prognostic health management (PHM) are vital techniques to ensure engineering system reliability and safety during the service. As multi-functionality and enhanced performance are in demand, modern engineering systems including aerospace, mechanical, and civil applications have

Structural/system health monitoring (SHM) and prognostic health management (PHM) are vital techniques to ensure engineering system reliability and safety during the service. As multi-functionality and enhanced performance are in demand, modern engineering systems including aerospace, mechanical, and civil applications have become more complex. The constituent and architectural complexity, and multisource sensing sources in modern engineering systems may limit the monitoring capabilities of conventional approaches and require more advanced SHM/PHM techniques. Therefore, a hybrid methodology that incorporates information fusion, nondestructive evaluation (NDE), machine learning (ML), and statistical analysis is needed for more effective damage diagnosis/prognosis and system safety management.This dissertation presents an automated aviation health management technique to enable proactive safety management for both aircraft and national airspace system (NAS). A real-time, data-driven aircraft safety monitoring technique using ML models and statistical models is developed to enable an early-stage upset detection capability, which can improve pilot’s situational awareness and provide a sufficient safety margin. The detection accuracy and computational efficiency of the developed monitoring techniques is validated using commercial unlabeled flight data recorder (FDR) and reported accident FDR dataset. A stochastic post-upset prediction framework is developed using a high-fidelity flight dynamics model to predict the post-impacts in both aircraft and air traffic system. Stall upset scenarios that are most likely occurred during loss of control in-flight (LOC-I) operation are investigated, and stochastic flight envelopes and risk region are predicted to quantify their severities. In addition, a robust, automatic damage diagnosis technique using ultrasonic Lamb waves and ML models is developed to effectively detect and classify fatigue damage modes in composite structures. The dispersion and propagation characteristics of the Lamb waves in a composite plate are investigated. A deep autoencoder-based diagnosis technique is proposed to detect fatigue damage using anomaly detection approach and automatically extract damage sensitive features from the waves. The patterns in the features are then further analyzed using outlier detection approach to classify the fatigue damage modes. The developed diagnosis technique is validated through an in-situ fatigue tests with periodic active sensing. The developed techniques in this research are expected to be integrated with the existing safety strategies to enhance decision making process for improving engineering system safety without affecting the system’s functions.
Date Created
2021
Agent

Synchrophasor Estimation and Imaging With Electric Fields and Neural Networks

161872-Thumbnail Image.png
Description
This research presents advances in time-synchronized phasor (i.e.,synchrophasor) estimation and imaging with very-low-frequency electric fields. Phasor measurement units measure and track dynamic systems, often power systems, using synchrophasor estimation algorithms. Two improvements to subspace-based synchrophasor estimation algorithms are shown. The first improvement

This research presents advances in time-synchronized phasor (i.e.,synchrophasor) estimation and imaging with very-low-frequency electric fields. Phasor measurement units measure and track dynamic systems, often power systems, using synchrophasor estimation algorithms. Two improvements to subspace-based synchrophasor estimation algorithms are shown. The first improvement is a dynamic thresholding method for accurately determining the signal subspace when using the estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm. This improvement facilitates accurate ESPRIT-based frequency estimates of both the nominal system frequency and the frequencies of interfering signals such as harmonics or out-of-band interference signals. Proper frequency estimation of all signals present in measurement data allows for accurate least squares estimates of synchrophasors for the nominal system frequency. By including the effects of clutter signals in the synchrophasor estimate, interference from clutter signals can be excluded. The result is near-flat estimation error during nominal system frequency changes, the presence of harmonic distortion, and out-of-band interference. The second improvement reduces the computational burden of the ESPRIT frequency estimation step by showing that an optimized Eigenvalue decomposition of the measurement data can be used instead of a singular value decomposition. This research also explores a deep-learning-based inversion method for imaging objects with a uniform electric field and a 2D planar D-dot array. Using electric fields as an illumination source has seen multiple applications ranging from medical imaging to mineral deposit detection. It is shown that a planar D-dot array and deep neural network can reconstruct the electrical properties of randomized objects. A 16000-sample dataset of objects comprised of a three-by-three grid of randomized dielectric constants was generated to train a deep neural network for predicting these dielectric constants from measured field distortions. Increasingly complex imaging environments are simulated, ranging from objects in free space to objects placed in a physical cage designed to produce uniform electric fields. Finally, this research relaxes the uniform electric field constraint, showing that the volume of an opaque container can be imaged with a copper tube antenna and a 1x4 array of D-dot sensors. Real world experimental results show that it is possible to image buckets of water (targets) within a plastic shed These experiments explore the detectability of targets as a function of target placement within the shed.
Date Created
2021
Agent

The Applications of Deep Learning in Medical Imaging Diagnosis

161843-Thumbnail Image.png
Description
In this thesis, the applications of deep learning in the analysis, detection and classification of medical imaging datasets were studied, with a focus on datasets having a limited sample size. A combined machine learning-deep learning model was designed to

In this thesis, the applications of deep learning in the analysis, detection and classification of medical imaging datasets were studied, with a focus on datasets having a limited sample size. A combined machine learning-deep learning model was designed to classify one small dataset, prostate cancer provided by Mayo Clinic, Arizona. Deep learning model was implemented to extract imaging features followed by machine learning classifier for prostate cancer diagnosis. The results were compared against models trained on texture-based features, namely gray level co-occurrence matrix (GLCM) and Gabor. Some of the challenges of performing diagnosis on medical imaging datasets with limited sample sizes, have been identified. Lastly, a set of future works have been proposed. Keywords: Deep learning, radiology, transfer learning, convolutional neural network.
Date Created
2021
Agent

Bayesian Nonparametric Reinforcement Learning in LTE and Wi-Fi Coexistence

161703-Thumbnail Image.png
Description
With the formation of next generation wireless communication, a growing number of new applications like internet of things, autonomous car, and drone is crowding the unlicensed spectrum. Licensed network such as LTE also comes to the unlicensed spectrum for better

With the formation of next generation wireless communication, a growing number of new applications like internet of things, autonomous car, and drone is crowding the unlicensed spectrum. Licensed network such as LTE also comes to the unlicensed spectrum for better providing high-capacity contents with low cost. However, LTE was not designed for sharing spectrum with others. A cooperation center for these networks is costly because they possess heterogeneous properties and everyone can enter and leave the spectrum unrestrictedly, so the design will be challenging. Since it is infeasible to incorporate potentially infinite scenarios with one unified design, an alternative solution is to let each network learn its own coexistence policy. Previous solutions only work on fixed scenarios. In this work we present a reinforcement learning algorithm to cope with the coexistence between Wi-Fi and LTE-LAA agents in 5 GHz unlicensed spectrum. The coexistence problem was modeled as a Dec-POMDP and Bayesian approach was adopted for policy learning with nonparametric prior to accommodate the uncertainty of policy for different agents. A fairness measure was introduced in the reward function to encourage fair sharing between agents. We turned the reinforcement learning into an optimization problem by transforming the value function as likelihood and variational inference for posterior approximation. Simulation results demonstrate that this algorithm can reach high value with compact policy representations, and stay computationally efficient when applying to agent set.
Date Created
2021
Agent

RNS-Based NTT Polynomial Multiplier for Lattice-Based Cryptography

158876-Thumbnail Image.png
Description
Lattice-based Cryptography is an up and coming field of cryptography that utilizes the difficulty of lattice problems to design lattice-based cryptosystems that are resistant to quantum attacks and applicable to Fully Homomorphic Encryption schemes (FHE). In this thesis, the parallelization

Lattice-based Cryptography is an up and coming field of cryptography that utilizes the difficulty of lattice problems to design lattice-based cryptosystems that are resistant to quantum attacks and applicable to Fully Homomorphic Encryption schemes (FHE). In this thesis, the parallelization of the Residue Number System (RNS) and algorithmic efficiency of the Number Theoretic Transform (NTT) are combined to tackle the most significant bottleneck of polynomial ring multiplication with the hardware design of an optimized RNS-based NTT polynomial multiplier. The design utilizes Negative Wrapped Convolution, the NTT, RNS Montgomery reduction with Bajard and Shenoy extensions, and optimized modular 32-bit channel arithmetic for nine RNS channels to accomplish an RNS polynomial multiplication. In addition to a full software implementation of the whole system, a pipelined and optimized RNS-based NTT unit with 4 RNS butterflies is implemented on the Xilinx Artix-7 FPGA(xc7a200tlffg1156-2L) for size and delay estimates. The hardware implementation achieves an operating frequency of 47.043 MHz and utilizes 13239 LUT's, 4010 FF's, and 330 DSP blocks, allowing for multiple simultaneously operating NTT units depending on FGPA size constraints.
Date Created
2020
Agent