Bayesian Inference and Information Learning for Switching Nonlinear Gene Regulatory Networks
Description
This dissertation centers on the development of Bayesian methods for learning differ- ent types of variation in switching nonlinear gene regulatory networks (GRNs). A new nonlinear and dynamic multivariate GRN model is introduced to account for different sources of variability in GRNs. The new model is aimed at more precisely capturing the complexity of GRN interactions through the introduction of time-varying kinetic order parameters, while allowing for variability in multiple model parameters. This model is used as the drift function in the development of several stochastic GRN mod- els based on Langevin dynamics. Six models are introduced which capture intrinsic and extrinsic noise in GRNs, thereby providing a full characterization of a stochastic regulatory system. A Bayesian hierarchical approach is developed for learning the Langevin model which best describes the noise dynamics at each time step. The trajectory of the state, which are the gene expression values, as well as the indicator corresponding to the correct noise model are estimated via sequential Monte Carlo (SMC) with a high degree of accuracy. To address the problem of time-varying regulatory interactions, a Bayesian hierarchical model is introduced for learning variation in switching GRN architectures with unknown measurement noise covariance. The trajectory of the state and the indicator corresponding to the network configuration at each time point are estimated using SMC. This work is extended to a fully Bayesian hierarchical model to account for uncertainty in the process noise covariance associated with each network architecture. An SMC algorithm with local Gibbs sampling is developed to estimate the trajectory of the state and the indicator correspond- ing to the network configuration at each time point with a high degree of accuracy. The results demonstrate the efficacy of Bayesian methods for learning information in switching nonlinear GRNs.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2023
Agent
- Author (aut): Vélez-Cruz, Nayely
- Thesis advisor (ths): Papandreou-Suppappola, Antonia
- Committee member: Moraffah, Bahman
- Committee member: Tepedelenlioğlu, Cihan
- Committee member: Berisha, Visar
- Publisher (pbl): Arizona State University