Description
Object tracking refers to the problem of estimating a moving object's time-varying parameters that are indirectly observed in measurements at each time step. Increased noise and clutter in the measurements reduce estimation accuracy as they increase the uncertainty of tracking

Object tracking refers to the problem of estimating a moving object's time-varying parameters that are indirectly observed in measurements at each time step. Increased noise and clutter in the measurements reduce estimation accuracy as they increase the uncertainty of tracking in the field of view. Whereas tracking is performed using a Bayesian filter, a Bayesian smoother can be utilized to refine parameter state estimations that occurred before the current time. In practice, smoothing can be widely used to improve state estimation or correct data association errors, and it can lead to significantly better estimation performance as it reduces the impact of noise and clutter. In this work, a single object tracking method is proposed based on integrating Kalman filtering and smoothing with thresholding to remove unreliable measurements. As the new method is effective when the noise and clutter in the measurements are high, the main goal is to find these measurements using a moving average filter and a thresholding method to improve estimation. Thus, the proposed method is designed to reduce estimation errors that result from measurements corrupted with high noise and clutter. Simulations are provided to demonstrate the improved performance of the new method when compared to smoothing without thresholding. The root-mean-square error in estimating the object state parameters is shown to be especially reduced under high noise conditions.
Reuse Permissions
  • Downloads
    PDF (3.5 MB)
    Download count: 5

    Details

    Title
    • Bayesian Filtering and Smoothing for Tracking in High Noise and Clutter Environments
    Contributors
    Date Created
    2022
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2022
    • Field of study: Computer Engineering

    Machine-readable links