Self-assembly at ionic liquid-based interfaces: fundamentals and applications

151979-Thumbnail Image.png
Description
Liquid-liquid interfaces serve as ideal 2-D templates on which solid particles can self-assemble into various structures. These self-assembly processes are important in fabrication of micron-sized devices and emulsion formulation. At oil/water interfaces, these structures can range from close-packed aggregates to

Liquid-liquid interfaces serve as ideal 2-D templates on which solid particles can self-assemble into various structures. These self-assembly processes are important in fabrication of micron-sized devices and emulsion formulation. At oil/water interfaces, these structures can range from close-packed aggregates to ordered lattices. By incorporating an ionic liquid (IL) at the interface, new self-assembly phenomena emerge. ILs are ionic compounds that are liquid at room temperature (essentially molten salts at ambient conditions) that have remarkable properties such as negligible volatility and high chemical stability and can be optimized for nearly any application. The nature of IL-fluid interfaces has not yet been studied in depth. Consequently, the corresponding self-assembly phenomena have not yet been explored. We demonstrate how the unique molecular nature of ILs allows for new self-assembly phenomena to take place at their interfaces. These phenomena include droplet bridging (the self-assembly of both particles and emulsion droplets), spontaneous particle transport through the liquid-liquid interface, and various gelation behaviors. In droplet bridging, self-assembled monolayers of particles effectively "glue" emulsion droplets to one another, allowing the droplets to self-assembly into large networks. With particle transport, it is experimentally demonstrated the ILs overcome the strong adhesive nature of the liquid-liquid interface and extract solid particles from the bulk phase without the aid of external forces. These phenomena are quantified and corresponding mechanisms are proposed. The experimental investigations are supported by molecular dynamics (MD) simulations, which allow for a molecular view of the self-assembly process. In particular, we show that particle self-assembly depends primarily on the surface chemistry of the particles and the non-IL fluid at the interface. Free energy calculations show that the attractive forces between nanoparticles and the liquid-liquid interface are unusually long-ranged, due to capillary waves. Furthermore, IL cations can exhibit molecular ordering at the IL-oil interface, resulting in a slight residual charge at this interface. We also explore the transient IL-IL interface, revealing molecular interactions responsible for the unusually slow mixing dynamics between two ILs. This dissertation, therefore, contributes to both experimental and theoretical understanding of particle self-assembly at IL based interfaces.
Date Created
2013
Agent

Lead identification, optimization and characterization of novel cancer treatment strategies using repositioned drugs

151860-Thumbnail Image.png
Description
Cancer is the second leading cause of death in the United States and novel methods of treating advanced malignancies are of high importance. Of these deaths, prostate cancer and breast cancer are the second most fatal carcinomas in men and

Cancer is the second leading cause of death in the United States and novel methods of treating advanced malignancies are of high importance. Of these deaths, prostate cancer and breast cancer are the second most fatal carcinomas in men and women respectively, while pancreatic cancer is the fourth most fatal in both men and women. Developing new drugs for the treatment of cancer is both a slow and expensive process. It is estimated that it takes an average of 15 years and an expense of $800 million to bring a single new drug to the market. However, it is also estimated that nearly 40% of that cost could be avoided by finding alternative uses for drugs that have already been approved by the Food and Drug Administration (FDA). The research presented in this document describes the testing, identification, and mechanistic evaluation of novel methods for treating many human carcinomas using drugs previously approved by the FDA. A tissue culture plate-based screening of FDA approved drugs will identify compounds that can be used in combination with the protein TRAIL to induce apoptosis selectively in cancer cells. Identified leads will next be optimized using high-throughput microfluidic devices to determine the most effective treatment conditions. Finally, a rigorous mechanistic analysis will be conducted to understand how the FDA-approved drug mitoxantrone, sensitizes cancer cells to TRAIL-mediated apoptosis.
Date Created
2013
Agent

Generation of macromolecule-templated gold nanoparticles by ionizing radiation

151453-Thumbnail Image.png
Description
Ionizing radiation, such as gamma rays and X-rays, are becoming more widely used. These high-energy forms of electromagnetic radiation are present in nuclear energy, astrophysics, and the medical field. As more and more people have the opportunity to be exposed

Ionizing radiation, such as gamma rays and X-rays, are becoming more widely used. These high-energy forms of electromagnetic radiation are present in nuclear energy, astrophysics, and the medical field. As more and more people have the opportunity to be exposed to ionizing radiation, the necessity for coming up with simple and quick methods of radiation detection is increasing. In this work, two systems were explored for their ability to simply detect ionizing radiation. Gold nanoparticles were formed via radiolysis of water in the presence of Elastin-like polypeptides (ELPs) and also in the presence of cationic polymers. Gold nanoparticle formation is an indicator of the presence of radiation. The system with ELP was split into two subsystems: those samples including isopropyl alcohol (IPA) and acetone, and those without IPA and acetone. The samples were exposed to certain radiation doses and gold nanoparticles were formed. Gold nanoparticle formation was deemed to have occurred when the sample changed color from light yellow to a red or purple color. Nanoparticle formation was also checked by absorbance measurements. In the cationic polymer system, gold nanoparticles were also formed after exposing the experimental system to certain radiation doses. Unique to the polymer system was the ability of some of the cationic polymers to form gold nanoparticles without the samples being irradiated. Future work to be done on this project is further characterization of the gold nanoparticles formed by both systems.
Date Created
2012
Agent

Core-shell composite nanoparticles: synthesis, characterization, and applications

151240-Thumbnail Image.png
Description
Nanoparticles are ubiquitous in various fields due to their unique properties not seen in similar bulk materials. Among them, core-shell composite nanoparticles are an important class of materials which are attractive for their applications in catalysis, sensing, electromagnetic shielding, drug

Nanoparticles are ubiquitous in various fields due to their unique properties not seen in similar bulk materials. Among them, core-shell composite nanoparticles are an important class of materials which are attractive for their applications in catalysis, sensing, electromagnetic shielding, drug delivery, and environmental remediation. This dissertation focuses on the study of core-shell type of nanoparticles where a polymer serves as the core and inorganic nanoparticles are the shell. This is an interesting class of supramolecular building blocks and can "exhibit unusual, possibly unique, properties which cannot be obtained simply by co-mixing polymer and inorganic particles". The one-step Pickering emulsion polymerization method was successfully developed and applied to synthesize polystyrene-silica core-shell composite particles. Possible mechanisms of the Pickering emulsion polymerization were also explored. The silica nanoparticles were thermodynamically favorable to self-assemble at liquid-liquid interfaces at the initial stage of polymerization and remained at the interface to finally form the shells of the composite particles. More importantly, Pickering emulsion polymerization was employed to synthesize polystyrene/poly(N-isopropylacrylamide) (PNIPAAm)-silica core-shell nanoparticles with N-isopropylacrylamide incorporated into the core as a co-monomer. The composite nanoparticles were temperature sensitive and could be up-taken by human prostate cancer cells and demonstrated effectiveness in drug delivery and cancer therapy. Similarly, by incorporating poly-2-(N,N)-dimethylamino)ethyl methacrylate (PDMA) into the core, pH sensitive core-shell composite nanoparticles were synthesized and applied as effective carriers to release a rheological modifier upon a pH change. Finally, the research focuses on facile approaches to engineer the transition of the temperature-sensitive particles and develop composite core-shell nanoparticles with a metallic shell.
Date Created
2012
Agent

Influence of histone deacetylase inhibitors on polymer mediated transgene delivery

150892-Thumbnail Image.png
Description
The effects of specific histone deacetylase inhibitors (HDACi) on transgene expression in combination with a novel polymer as a delivery vehicle are investigated in this research. Polymer vectors, although safer than viruses, are notorious for low levels of gene expression.

The effects of specific histone deacetylase inhibitors (HDACi) on transgene expression in combination with a novel polymer as a delivery vehicle are investigated in this research. Polymer vectors, although safer than viruses, are notorious for low levels of gene expression. In this investigation, the use of an emerging chemotherapeutic anti-cancer drug molecule, HDACi, was used to enhance the polymer-mediated gene expression. HDACi are capable of inhibiting deacetylation activities of histones and other non-histone proteins in the cytoplasm and nucleus, as well as increase transcriptional activities necessary for gene expression. In a prior study, a parallel synthesis and screening of polymers yielded a lead cationic polymer with high DNA-binding properties, and even more attractive, high transgene expressions. Previous studies showed the use of this polymer in conjunction with cytoplasmic HDACi significantly enhanced gene expression in PC3-PSMA prostate cancer cells. This led to the basis for the investigation presented in this thesis, but to use nuclear HDACi to potentially achieve similar results. The HDACi, HDACi_A, was a previously discovered lead drug that had potential to significantly enhance luciferase expression in PC3-PSMA cells. The results of this study found that the 20:1 polymer:plasmid DNA weight ratio was effective with 1 uM and 2 uM HDACI_A concentrations, showing up to a 9-fold enhancement. This enhancement suggested that HDACi_A was effectively aiding transfection. While not an astounding enhancement, it is still interesting enough to investigate further. Cell viabilities need to be determined to supplement the results.
Date Created
2012
Agent

Gold nanorod-based assemblies and composites: cancer therapeutics, sensors and tissue engineering materials

150592-Thumbnail Image.png
Description
Gold nanoparticles as potential diagnostic, therapeutic and sensing systems have a long history of use in medicine, and have expanded to a variety of applications. Gold nanoparticles are attractive in biological applications due to their unique optical, chemical and biological

Gold nanoparticles as potential diagnostic, therapeutic and sensing systems have a long history of use in medicine, and have expanded to a variety of applications. Gold nanoparticles are attractive in biological applications due to their unique optical, chemical and biological properties. Particularly, gold nanorods (GNRs) are increasingly used due to superior optical property in the near infrared (NIR) window. Light absorbed by the nanorod can be dissipated as heat efficiently or re-emitted by the particle. However, the limitations for clinical translation of gold nanorods include low yields, poor stability, depth-restricted imaging, and resistance of cancer cells to hyperthermia, are severe. A novel high-throughput synthesis method was employed to significantly increase in yields of solid and porous gold nanorods/wires. Stable functional nanoassemblies and nanomaterials were generated by interfacing gold nanorods with a variety of polymeric and polypeptide-based coatings, resulting in unique properties of polymer-gold nanorod assemblies and composites. Here the use of these modified gold nanorods in a variety of applications including optical sensors, cancer therapeutics, and nanobiomaterials were described.
Date Created
2012
Agent

Evaluation of nanoporous carbon thin films for drug loading and controlled release

150366-Thumbnail Image.png
Description
Mesoporous materials that possess large surface area, tunable pore size, and ordered structures are attractive features for many applications such as adsorption, protein separation, enzyme encapsulation and drug delivery as these materials can be tailored to host different guest molecules.

Mesoporous materials that possess large surface area, tunable pore size, and ordered structures are attractive features for many applications such as adsorption, protein separation, enzyme encapsulation and drug delivery as these materials can be tailored to host different guest molecules. Films provide a model system to understand how the pore orientation impacts the potential for loading and release of selectively sized molecules. This research work aims to develop structure-property relationships to understand how pore size, geometry, and surface hydrophobicity influence the loading and release of drug molecules. In this study, the pore size is systematically varied by incorporating pore-swelling agent of polystyrene oligomers (hPS) to soft templated mesoporous carbon films fabricated by cooperative assembly of poly(styrene-block-ethylene oxide) (SEO) with phenolic resin. To examine the impact of morphology, different compositions of amphiphilic triblock copolymer templates, poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-PPO-PEO), are used to form two-dimensional hexagonal and cubic mesostructures. Lastly, the carbonization temperature provides a handle to tune the hydrophobicity of the film. These mesoporous films are then utilized to understand the uptake and release of a model drug Mitoxantrone dihydrochloride from nanostructured materials. The largest pore size (6nm) mesoporous carbon based on SEO exhibits the largest uptake (3.5μg/cm2); this is attributed to presence of larger internal volume compared to the other two films. In terms of release, a controlled response is observed for all films with the highest release for the 2nm cubic film (1.45 μg/cm2) after 15 days, but this is only 56 % of the drug loaded. Additionally, the surface hydrophobicity impacts the fraction of drug release with a decrease from 78% to 43%, as the films become more hydrophobic when carbonized at higher temperatures. This work provides a model system to understand how pore morphology, size and chemistry influence the drug loading and release for potential implant applications.
Date Created
2011
Agent

A focused poly(aminoether) library for transgene delivery to cancer cells

150068-Thumbnail Image.png
Description
Cancer diseases are among the leading cause of death in the United States. Advanced cancer diseases are characterized by genetic defects resulting in uncontrollable cell growth. Currently, chemotherapeutics are one of the mainstream treatments administered to cancer patients but

Cancer diseases are among the leading cause of death in the United States. Advanced cancer diseases are characterized by genetic defects resulting in uncontrollable cell growth. Currently, chemotherapeutics are one of the mainstream treatments administered to cancer patients but are less effective if administered in the later stages of metastasis, and can result in unwanted side effects and broad toxicities. Therefore, current efforts have explored gene therapy as an alternative strategy to correct the genetic defects associated with cancer diseases, by administering genes which encode for proteins that result in cell death. While the use of viral vectors shows high level expression of the delivered transgene, the potential for insertion mutagenesis and activation of immune responses raise concern in clinical applications. Non-viral vectors, including cationic lipids and polymers, have been explored as potentially safer alternatives to viral delivery systems. These systems are advantageous for transgene delivery due to ease of synthesis, scale up, versatility, and in some cases due to their biodegradability and biocompatibility. However, low efficacies for transgene expression and high cytotoxicities limit the practical use of these polymers. In this work, a small library of twenty-one cationic polymers was synthesized following a ring opening polymerization of diglycidyl ethers (epoxides) by polyamines. The polymers were screened in parallel and transfection efficacies of individual polymers were compared to those of polyethylenimine (PEI), a current standard for polymer-mediated transgene delivery. Seven lead polymers that demonstrated higher transgene expression efficacies than PEI in pancreatic and prostate cancer cells lines were identified from the screening. A second related effort involved the generation of polymer-antibody conjugates in order to facilitate targeting of delivered plasmid DNA selectively to cancer cells. Future work with the novel lead polymers and polymer-antibody conjugates developed in this research will involve an investigation into the delivery of transgenes encoding for apoptosis-inducing proteins both in vitro and in vivo.
Date Created
2011
Agent

Elastic properties of molecular glass thin films

150055-Thumbnail Image.png
Description
This dissertation provides a fundamental understanding of the impact of bulk polymer properties on the nanometer length scale modulus. The elastic modulus of amorphous organic thin films is examined using a surface wrinkling technique. Potential correlations between thin film behavior

This dissertation provides a fundamental understanding of the impact of bulk polymer properties on the nanometer length scale modulus. The elastic modulus of amorphous organic thin films is examined using a surface wrinkling technique. Potential correlations between thin film behavior and intrinsic properties such as flexibility and chain length are explored. Thermal properties, glass transition temperature (Tg) and the coefficient of thermal expansion, are examined along with the moduli of these thin films. It is found that the nanometer length scale behavior of flexible polymers correlates to its bulk Tg and not the polymers intrinsic size. It is also found that decreases in the modulus of ultrathin flexible films is not correlated with the observed Tg decrease in films of the same thickness. Techniques to circumvent reductions from bulk modulus were also demonstrated. However, as chain flexibility is reduced the modulus becomes thickness independent down to 10 nm. Similarly for this series minor reductions in Tg were obtained. To further understand the impact of the intrinsic size and processing conditions; this wrinkling instability was also utilized to determine the modulus of small organic electronic materials at various deposition conditions. Lastly, this wrinkling instability is exploited for development of poly furfuryl alcohol wrinkles. A two-step wrinkling process is developed via an acid catalyzed polymerization of a drop cast solution of furfuryl alcohol and photo acid generator. The ability to control the surface topology and tune the wrinkle wavelength with processing parameters such as substrate temperature and photo acid generator concentration is also demonstrated. Well-ordered linear, circular, and curvilinear patterns are also obtained by selective ultraviolet exposure and polymerization of the furfuryl alcohol film. As a carbon precursor a thorough understanding of this wrinkling instability can have applications in a wide variety of technologies.
Date Created
2011
Agent

Formation of biomimetic membranes on inorganic supports of different surface morphology and macroscopic geometry

149862-Thumbnail Image.png
Description
Biological membranes are critical to cell sustainability by selectively permeating polar molecules into the intracellular space and providing protection to the interior organelles. Biomimetic membranes (model cell membranes) are often used to fundamentally study the lipid bilayer backbone structure of

Biological membranes are critical to cell sustainability by selectively permeating polar molecules into the intracellular space and providing protection to the interior organelles. Biomimetic membranes (model cell membranes) are often used to fundamentally study the lipid bilayer backbone structure of the biological membrane. Lipid bilayer membranes are often supported using inorganic materials in an effort to improve membrane stability and for application to novel biosensing platforms. Published literature has shown that a variety of dense inorganic materials with various surface properties have been investigated for the study of biomimetic membranes. However, literature does not adequately address the effect of porous materials or supports with varying macroscopic geometries on lipid bilayer membrane behavior. The objective of this dissertation is to present a fundamental study on the synthesis of lipid bilayer membranes supported by novel inorganic supports in an effort to expand the number of available supports for biosensing technology. There are two fundamental areas covered including: (1) synthesis of lipid bilayer membranes on porous inorganic materials and (2) synthesis and characterization of cylindrically supported lipid bilayer membranes. The lipid bilayer membrane formation behavior on various porous supports was studied via direct mass adsorption using a quartz crystal microbalance. Experimental results demonstrate significantly different membrane formation behaviors on the porous inorganic supports. A lipid bilayer membrane structure was formed only on SiO2 based surfaces (dense SiO2 and silicalite, basic conditions) and gamma-alumina (acidic conditions). Vesicle monolayer adsorption was observed on gamma-alumina (basic conditions), and yttria stabilized zirconia (YSZ) of varying roughness. Parameters such as buffer pH, surface chemistry and surface roughness were found to have a significant impact on the vesicle adsorption kinetics. Experimental and modeling work was conducted to study formation and characterization of cylindrically supported lipid bilayer membranes. A novel sensing technique (long-period fiber grating refractometry) was utilized to measure the formation mechanism of lipid bilayer membranes on an optical fiber. It was found that the membrane formation kinetics on the fiber was similar to its planar SiO2 counterpart. Fluorescence measurements verified membrane transport behavior and found that characterization artifacts affected the measured transport behavior.
Date Created
2011
Agent