A non-consensus based decentralized financial transaction processing model with support for efficient auditing

154792-Thumbnail Image.png
Description
The success of Bitcoin has generated significant interest in the financial community to understand whether the technological underpinnings of the cryptocurrency paradigm can be leveraged to improve the efficiency of financial processes in the existing infrastructure. Various alternative proposals, most

The success of Bitcoin has generated significant interest in the financial community to understand whether the technological underpinnings of the cryptocurrency paradigm can be leveraged to improve the efficiency of financial processes in the existing infrastructure. Various alternative proposals, most notably, Ripple and Ethereum, aim to provide solutions to the financial community in different ways. These proposals derive their security guarantees from either the computational hardness of proof-of-work or voting based distributed consensus mechanism, both of which can be computationally expensive. Furthermore, the financial audit requirements for a participating financial institutions have not been suitably addressed.

This thesis presents a novel approach of constructing a non-consensus based decentralized financial transaction processing model with a built-in efficient audit structure. The problem of decentralized inter-bank payment processing is used for the model design. The two key insights used in this work are (1) to utilize a majority signature based replicated storage protocol for transaction authorization, and (2) to construct individual self-verifiable audit trails for each node as opposed to a common Blockchain. Theoretical analysis shows that the model provides cryptographic security for transaction processing and the presented audit structure facilitates financial auditing of individual nodes in time independent of the number of transactions.
Date Created
2016
Agent

Secure and privacy-preserving microblogging services: attacks and defenses

154767-Thumbnail Image.png
Description
Microblogging services such as Twitter, Sina Weibo, and Tumblr have been emerging and deeply embedded into people's daily lives. Used by hundreds of millions of users to connect the people worldwide and share and access information in real-time, the microblogging

Microblogging services such as Twitter, Sina Weibo, and Tumblr have been emerging and deeply embedded into people's daily lives. Used by hundreds of millions of users to connect the people worldwide and share and access information in real-time, the microblogging service has also became the target of malicious attackers due to its massive user engagement and structural openness. Although existed, little is still known in the community about new types of vulnerabilities in current microblogging services which could be leveraged by the intelligence-evolving attackers, and more importantly, the corresponding defenses that could prevent both the users and the microblogging service providers from being attacked. This dissertation aims to uncover a number of challenging security and privacy issues in microblogging services and also propose corresponding defenses.

This dissertation makes fivefold contributions. The first part presents the social botnet, a group of collaborative social bots under the control of a single botmaster, demonstrate the effectiveness and advantages of exploiting a social botnet for spam distribution and digital-influence manipulation, and propose the corresponding countermeasures and evaluate their effectiveness. Inspired by Pagerank, the second part describes TrueTop, the first sybil-resilient system to find the top-K influential users in microblogging services with very accurate results and strong resilience to sybil attacks. TrueTop has been implemented to handle millions of nodes and 100 times more edges on commodity computers. The third and fourth part demonstrate that microblogging systems' structural openness and users' carelessness could disclose the later's sensitive information such as home city and age. LocInfer, a novel and lightweight system, is presented to uncover the majority of the users in any metropolitan area; the dissertation also proposes MAIF, a novel machine learning framework that leverages public content and interaction information in microblogging services to infer users' hidden ages. Finally, the dissertation proposes the first privacy-preserving social media publishing framework to let the microblogging service providers publish their data to any third-party without disclosing users' privacy and meanwhile meeting the data's commercial utilities. This dissertation sheds the light on the state-of-the-art security and privacy issues in the microblogging services.
Date Created
2016
Agent

E-mail header injections - an analysis of the World Wide Web

154704-Thumbnail Image.png
Description
E-Mail header injection vulnerability is a class of vulnerability that can occur in web applications that use user input to construct e-mail messages. E-Mail injection is possible when the mailing script fails to check for the presence of e-mail headers

E-Mail header injection vulnerability is a class of vulnerability that can occur in web applications that use user input to construct e-mail messages. E-Mail injection is possible when the mailing script fails to check for the presence of e-mail headers in user input (either form fields or URL parameters). The vulnerability exists in the reference implementation of the built-in “mail” functionality in popular languages like PHP, Java, Python, and Ruby. With the proper injection string, this vulnerability can be exploited to inject additional headers and/or modify existing headers in an e-mail message, allowing an attacker to completely alter the content of the e-mail.

This thesis develops a scalable mechanism to automatically detect E-Mail Header Injection vulnerability and uses this mechanism to quantify the prevalence of E- Mail Header Injection vulnerabilities on the Internet. Using a black-box testing approach, the system crawled 21,675,680 URLs to find URLs which contained form fields. 6,794,917 such forms were found by the system, of which 1,132,157 forms contained e-mail fields. The system used this data feed to discern the forms that could be fuzzed with malicious payloads. Amongst the 934,016 forms tested, 52,724 forms were found to be injectable with more malicious payloads. The system tested 46,156 of these and was able to find 496 vulnerable URLs across 222 domains, which proves that the threat is widespread and deserves future research attention.
Date Created
2016
Agent

Analysis and visualization of OpenFlow rule conflicts

154622-Thumbnail Image.png
Description
In traditional networks the control and data plane are highly coupled, hindering development. With Software Defined Networking (SDN), the two planes are separated, allowing innovations on either one independently of the other. Here, the control plane is formed by the

In traditional networks the control and data plane are highly coupled, hindering development. With Software Defined Networking (SDN), the two planes are separated, allowing innovations on either one independently of the other. Here, the control plane is formed by the applications that specify an organization's policy and the data plane contains the forwarding logic. The application sends all commands to an SDN controller which then performs the requested action on behalf of the application. Generally, the requested action is a modification to the flow tables, present in the switches, to reflect a change in the organization's policy. There are a number of ways to control the network using the SDN principles, but the most widely used approach is OpenFlow.

With the applications now having direct access to the flow table entries, it is easy to have inconsistencies arise in the flow table rules. Since the flow rules are structured similar to firewall rules, the research done in analyzing and identifying firewall rule conflicts can be adapted to work with OpenFlow rules.

The main work of this thesis is to implement flow conflict detection logic in OpenDaylight and inspect the applicability of techniques in visualizing the conflicts. A hierarchical edge-bundling technique coupled with a Reingold-Tilford tree is employed to present the relationship between the conflicting rules. Additionally, a table-driven approach is also implemented to display the details of each flow.

Both types of visualization are then tested for correctness by providing them with flows which are known to have conflicts. The conflicts were identified properly and displayed by the views.
Date Created
2016
Agent

Data Protection over Cloud

154606-Thumbnail Image.png
Description
Data protection has long been a point of contention and a vastly researched field. With the advent of technology and advances in Internet technologies, securing data has become much more challenging these days. Cloud services have become very popular. Given

Data protection has long been a point of contention and a vastly researched field. With the advent of technology and advances in Internet technologies, securing data has become much more challenging these days. Cloud services have become very popular. Given the ease of access and availability of the systems, it is not easy to not use cloud to store data. This however, pose a significant risk to data security as more of your data is available to a third party. Given the easy transmission and almost infinite storage of data, securing one's sensitive information has become a major challenge.

Cloud service providers may not be trusted completely with your data. It is not very uncommon to snoop over the data for finding interesting patterns to generate ad revenue or divulge your information to a third party, e.g. government and law enforcing agencies. For enterprises who use cloud service, it pose a risk for their intellectual property and business secrets. With more and more employees using cloud for their day to day work, business now face a risk of losing or leaking out information.

In this thesis, I have focused on ways to protect data and information over cloud- a third party not authorized to use your data, all this while still utilizing cloud services for transfer and availability of data. This research proposes an alternative to an on-premise secure infrastructure giving exibility to user for protecting the data and control over it. The project uses cryptography to protect data and create a secure architecture for secret key migration in order to decrypt the data securely for the intended recipient. It utilizes Intel's technology which gives it an added advantage over other existing solutions.
Date Created
2016
Agent

An evaluation of SDN based network virtualization techniques

154567-Thumbnail Image.png
Description
With the software-defined networking trend growing, several network virtualization controllers have been developed in recent years. These controllers, also called network hypervisors, attempt to manage physical SDN based networks so that multiple tenants can safely share the same forwarding plane

With the software-defined networking trend growing, several network virtualization controllers have been developed in recent years. These controllers, also called network hypervisors, attempt to manage physical SDN based networks so that multiple tenants can safely share the same forwarding plane hardware without risk of being affected by or affecting other tenants. However, many areas remain unexplored by current network hypervisor implementations. This thesis presents and evaluates some of the features offered by network hypervisors, such as full header space availability, isolation, and transparent traffic forwarding capabilities for tenants. Flow setup time and throughput are also measured and compared among different network hypervisors. Three different network hypervisors are evaluated: FlowVisor, VeRTIGO and OpenVirteX. These virtualization tools are assessed with experiments conducted on three different testbeds: an emulated Mininet scenario, a physical single-switch testbed, and also a remote GENI testbed. The results indicate that network hypervisors bring SDN flexibility to network virtualization, making it easier for network administrators to define with precision how the network is sliced and divided among tenants. This increased flexibility, however, may come with the cost of decreased performance, and also brings additional risks of interoperability due to a lack of standardization of virtualization methods.
Date Created
2016
Agent

Enhancing Mobile Forensics on iOS

154172-Thumbnail Image.png
Description
Due to the shortcomings of modern Mobile Device Management solutions, businesses

have begun to incorporate forensics to analyze their mobile devices and respond

to any incidents of malicious activity in order to protect their sensitive data. Current

forensic tools, however, can only look

Due to the shortcomings of modern Mobile Device Management solutions, businesses

have begun to incorporate forensics to analyze their mobile devices and respond

to any incidents of malicious activity in order to protect their sensitive data. Current

forensic tools, however, can only look a static image of the device being examined,

making it difficult for a forensic analyst to produce conclusive results regarding the

integrity of any sensitive data on the device. This research thesis expands on the

use of forensics to secure data by implementing an agent on a mobile device that can

continually collect information regarding the state of the device. This information is

then sent to a separate server in the form of log files to be analyzed using a specialized

tool. The analysis tool is able to look at the data collected from the device over time

and perform specific calculations, according to the user's specifications, highlighting

any correlations or anomalies among the data which might be considered suspicious

to a forensic analyst. The contribution of this paper is both an in-depth explanation

on the implementation of an iOS application to be used to improve the mobile forensics

process as well as a proof-of-concept experiment showing how evidence collected

over time can be used to improve the accuracy of a forensic analysis.
Date Created
2015
Agent

Toward monitoring, assessing, and confining mobile applications in modern mobile platforms

154095-Thumbnail Image.png
Description
Smartphones are pervasive nowadays. They are supported by mobile platforms that allow users to download and run feature-rich mobile applications (apps). While mobile apps help users conveniently process personal data on mobile devices, they also pose security and privacy threats

Smartphones are pervasive nowadays. They are supported by mobile platforms that allow users to download and run feature-rich mobile applications (apps). While mobile apps help users conveniently process personal data on mobile devices, they also pose security and privacy threats and put user's data at risk. Even though modern mobile platforms such as Android have integrated security mechanisms to protect users, most mechanisms do not easily adapt to user's security requirements and rapidly evolving threats. They either fail to provide sufficient intelligence for a user to make informed security decisions, or require great sophistication to configure the mechanisms for enforcing security decisions. These limitations lead to a situation where users are disadvantageous against emerging malware on modern mobile platforms. To remedy this situation, I propose automated and systematic approaches to address three security management tasks: monitoring, assessment, and confinement of mobile apps. In particular, monitoring apps helps a user observe and record apps' runtime behaviors as controlled under security mechanisms. Automated assessment distills intelligence from the observed behaviors and the security configurations of security mechanisms. The distilled intelligence further fuels enhanced confinement mechanisms that flexibly and accurately shape apps' behaviors. To demonstrate the feasibility of my approaches, I design and implement a suite of proof-of-concept prototypes that support the three tasks respectively.
Date Created
2015
Agent

Protecting identity and location privacy in online environment

153986-Thumbnail Image.png
Description
The recent years have witnessed a rapid development of mobile devices and smart devices. As more and more people are getting involved in the online environment, privacy issues are becoming increasingly important. People’s privacy in the digital world is much

The recent years have witnessed a rapid development of mobile devices and smart devices. As more and more people are getting involved in the online environment, privacy issues are becoming increasingly important. People’s privacy in the digital world is much easier to leak than in the real world, because every action people take online would leave a trail of information which could be recorded, collected and used by malicious attackers. Besides, service providers might collect users’ information and analyze them, which also leads to a privacy breach. Therefore, preserving people’s privacy is very important in the online environment.

In this dissertation, I study the problems of preserving people’s identity privacy and loca- tion privacy in the online environment. Specifically, I study four topics: identity privacy in online social networks (OSNs), identity privacy in anonymous message submission, lo- cation privacy in location based social networks (LBSNs), and location privacy in location based reminders. In the first topic, I propose a system which can hide users’ identity and data from untrusted storage site where the OSN provider puts users’ data. I also design a fine grained access control mechanism which prevents unauthorized users from accessing the data. Based on the secret sharing scheme, I construct a shuffle protocol that disconnects the relationship between members’ identities and their submitted messages in the topic of identity privacy in anonymous message submission. The message is encrypted on the mem- ber side and decrypted on the message collector side. The collector eventually gets all of the messages but does not know who submitted which message. In the third topic, I pro- pose a framework that hides users’ check-in information from the LBSN. Considering the limited computation resources on smart devices, I propose a delegatable pseudo random function to outsource computations to the much more powerful server while preserving privacy. I also implement efficient revocations. In the topic of location privacy in location based reminders, I propose a system to hide users’ reminder locations from an untrusted cloud server. I propose a cross based approach and an improved bar based approach, re- spectively, to represent a reminder area. The reminder location and reminder message are encrypted before uploading to the cloud server, which then can determine whether the dis- tance between the user’s current location and the reminder location is within the reminder distance without knowing anything about the user’s location information and the content of the reminder message.
Date Created
2015
Agent

Techniques for supporting prediction of security breaches in critical cloud infrastructures using Bayesian network and Markov decision process

153969-Thumbnail Image.png
Description
Emerging trends in cyber system security breaches in critical cloud infrastructures show that attackers have abundant resources (human and computing power), expertise and support of large organizations and possible foreign governments. In order to greatly improve the protection of critical

Emerging trends in cyber system security breaches in critical cloud infrastructures show that attackers have abundant resources (human and computing power), expertise and support of large organizations and possible foreign governments. In order to greatly improve the protection of critical cloud infrastructures, incorporation of human behavior is needed to predict potential security breaches in critical cloud infrastructures. To achieve such prediction, it is envisioned to develop a probabilistic modeling approach with the capability of accurately capturing system-wide causal relationship among the observed operational behaviors in the critical cloud infrastructure and accurately capturing probabilistic human (users’) behaviors on subsystems as the subsystems are directly interacting with humans. In our conceptual approach, the system-wide causal relationship can be captured by the Bayesian network, and the probabilistic human behavior in the subsystems can be captured by the Markov Decision Processes. The interactions between the dynamically changing state graphs of Markov Decision Processes and the dynamic causal relationships in Bayesian network are key components in such probabilistic modelling applications. In this thesis, two techniques are presented for supporting the above vision to prediction of potential security breaches in critical cloud infrastructures. The first technique is for evaluation of the conformance of the Bayesian network with the multiple MDPs. The second technique is to evaluate the dynamically changing Bayesian network structure for conformance with the rules of the Bayesian network using a graph checker algorithm. A case study and its simulation are presented to show how the two techniques support the specific parts in our conceptual approach to predicting system-wide security breaches in critical cloud infrastructures.
Date Created
2015
Agent