SDN-based proactive defense mechanism in a cloud system

153909-Thumbnail Image.png
Description
Cloud computing is known as a new and powerful computing paradigm. This new generation of network computing model delivers both software and hardware as on-demand resources and various services over the Internet. However, the security concerns prevent users from adopting

Cloud computing is known as a new and powerful computing paradigm. This new generation of network computing model delivers both software and hardware as on-demand resources and various services over the Internet. However, the security concerns prevent users from adopting the cloud-based solutions to fulfill the IT requirement for many business critical computing. Due to the resource-sharing and multi-tenant nature of cloud-based solutions, cloud security is especially the most concern in the Infrastructure as a Service (IaaS). It has been attracting a lot of research and development effort in the past few years.

Virtualization is the main technology of cloud computing to enable multi-tenancy.

Computing power, storage, and network are all virtualizable to be shared in an IaaS system. This important technology makes abstract infrastructure and resources available to users as isolated virtual machines (VMs) and virtual networks (VNs). However, it also increases vulnerabilities and possible attack surfaces in the system, since all users in a cloud share these resources with others or even the attackers. The promising protection mechanism is required to ensure strong isolation, mediated sharing, and secure communications between VMs. Technologies for detecting anomalous traffic and protecting normal traffic in VNs are also needed. Therefore, how to secure and protect the private traffic in VNs and how to prevent the malicious traffic from shared resources are major security research challenges in a cloud system.

This dissertation proposes four novel frameworks to address challenges mentioned above. The first work is a new multi-phase distributed vulnerability, measurement, and countermeasure selection mechanism based on the attack graph analytical model. The second work is a hybrid intrusion detection and prevention system to protect VN and VM using virtual machines introspection (VMI) and software defined networking (SDN) technologies. The third work further improves the previous works by introducing a VM profiler and VM Security Index (VSI) to keep track the security status of each VM and suggest the optimal countermeasure to mitigate potential threats. The final work is a SDN-based proactive defense mechanism for a cloud system using a reconfiguration model and moving target defense approaches to actively and dynamically change the virtual network configuration of a cloud system.
Date Created
2015
Agent

Graphical representations of security settings in Android

Description
On Android, existing security procedures require apps to request permissions for access to sensitive resources.

Only when the user approves the requested permissions will the app be installed.

However, permissions are an incomplete security mechanism.

In addition to a user's limited understanding of

On Android, existing security procedures require apps to request permissions for access to sensitive resources.

Only when the user approves the requested permissions will the app be installed.

However, permissions are an incomplete security mechanism.

In addition to a user's limited understanding of permissions, the mechanism does not account for the possibility that different permissions used together have the ability to be more dangerous than any single permission alone.

Even if users did understand the nature of an app's requested permissions, this mechanism is still not enough to guarantee that a user's information is protected.

Applications can potentially send or receive sensitive information from other applications without the required permissions by using intents.

In other words, applications can potentially collaborate in ways unforeseen by the user, even if the user understands the permissions of each app independently.

In this thesis, we present several graph-based approaches to address these issues.

We determine the permissions of an app and generate scores based on our assigned value of certain resources.

We analyze these scores overall, as well as in the context of the app's category as determined by Google Play.

We show that these scores can be used to identify overzealous apps, as well as apps that do not properly fit within their category.

We analyze potential interactions between different applications using intents, and identify several promiscuous apps with low permission scores, showing that permissions alone are not sufficient to evaluate the security risks of an app.

Our analyses can form the basis of a system to assist users in identifying apps that can potentially compromise user privacy.
Date Created
2015
Agent

Managing a user's vulnerability on a social networking site

153374-Thumbnail Image.png
Description
Users often join an online social networking (OSN) site, like Facebook, to remain social, by either staying connected with friends or expanding social networks. On an OSN site, users generally share variety of personal information which is often expected

Users often join an online social networking (OSN) site, like Facebook, to remain social, by either staying connected with friends or expanding social networks. On an OSN site, users generally share variety of personal information which is often expected to be visible to their friends, but sometimes vulnerable to unwarranted access from others. The recent study suggests that many personal attributes, including religious and political affiliations, sexual orientation, relationship status, age, and gender, are predictable using users' personal data from an OSN site. The majority of users want to remain socially active, and protect their personal data at the same time. This tension leads to a user's vulnerability, allowing privacy attacks which can cause physical and emotional distress to a user, sometimes with dire consequences. For example, stalkers can make use of personal information available on an OSN site to their personal gain. This dissertation aims to systematically study a user vulnerability against such privacy attacks.

A user vulnerability can be managed in three steps: (1) identifying, (2) measuring and (3) reducing a user vulnerability. Researchers have long been identifying vulnerabilities arising from user's personal data, including user names, demographic attributes, lists of friends, wall posts and associated interactions, multimedia data such as photos, audios and videos, and tagging of friends. Hence, this research first proposes a way to measure and reduce a user vulnerability to protect such personal data. This dissertation also proposes an algorithm to minimize a user's vulnerability while maximizing their social utility values.

To address these vulnerability concerns, social networking sites like Facebook usually let their users to adjust their profile settings so as to make some of their data invisible. However, users sometimes interact with others using unprotected posts (e.g., posts from a ``Facebook page\footnote{The term ''Facebook page`` refers to the page which are commonly dedicated for businesses, brands and organizations to share their stories and connect with people.}''). Such interactions help users to become more social and are publicly accessible to everyone. Thus, visibilities of these interactions are beyond the control of their profile settings. I explore such unprotected interactions so that users' are well aware of these new vulnerabilities and adopt measures to mitigate them further. In particular, {\em are users' personal attributes predictable using only the unprotected interactions}? To answer this question, I address a novel problem of predictability of users' personal attributes with unprotected interactions. The extreme sparsity patterns in users' unprotected interactions pose a serious challenge. Therefore, I approach to mitigating the data sparsity challenge by designing a novel attribute prediction framework using only the unprotected interactions. Experimental results on Facebook dataset demonstrates that the proposed framework can predict users' personal attributes.
Date Created
2015
Agent

Policy-driven security management for gateway-oriented reconfigurable ecosystems

153335-Thumbnail Image.png
Description
With the increasing user demand for low latency, elastic provisioning of computing resources coupled with ubiquitous and on-demand access to real-time data, cloud computing has emerged as a popular

With the increasing user demand for low latency, elastic provisioning of computing resources coupled with ubiquitous and on-demand access to real-time data, cloud computing has emerged as a popular computing paradigm to meet growing user demands. However, with the introduction and rising use of wear- able technology and evolving uses of smart-phones, the concept of Internet of Things (IoT) has become a prevailing notion in the currently growing technology industry. Cisco Inc. has projected a data creation of approximately 403 Zetabytes (ZB) by 2018. The combination of bringing benign devices and connecting them to the web has resulted in exploding service and data aggregation requirements, thus requiring a new and innovative computing platform. This platform should have the capability to provide robust real-time data analytics and resource provisioning to clients, such as IoT users, on-demand. Such a computation model would need to function at the edge-of-the-network, forming a bridge between the large cloud data centers and the distributed connected devices.

This research expands on the notion of bringing computational power to the edge- of-the-network, and then integrating it with the cloud computing paradigm whilst providing services to diverse IoT-based applications. This expansion is achieved through the establishment of a new computing model that serves as a platform for IoT-based devices to communicate with services in real-time. We name this paradigm as Gateway-Oriented Reconfigurable Ecosystem (GORE) computing. Finally, this thesis proposes and discusses the development of a policy management framework for accommodating our proposed computational paradigm. The policy framework is designed to serve both the hosted applications and the GORE paradigm by enabling them to function more efficiently. The goal of the framework is to ensure uninterrupted communication and service delivery between users and their applications.
Date Created
2015
Agent

Information pooling bias in collaborative cyber forensics

153207-Thumbnail Image.png
Description
Cyber threats are growing in number and sophistication making it important to continually study and improve all dimensions of cyber defense. Human teamwork in cyber defense analysis has been overlooked even though it has been identified as an important predictor

Cyber threats are growing in number and sophistication making it important to continually study and improve all dimensions of cyber defense. Human teamwork in cyber defense analysis has been overlooked even though it has been identified as an important predictor of cyber defense performance. Also, to detect advanced forms of threats effective information sharing and collaboration between the cyber defense analysts becomes imperative. Therefore, through this dissertation work, I took a cognitive engineering approach to investigate and improve cyber defense teamwork. The approach involved investigating a plausible team-level bias called the information pooling bias in cyber defense analyst teams conducting the detection task that is part of forensics analysis through human-in-the-loop experimentation. The approach also involved developing agent-based models based on the experimental results to explore the cognitive underpinnings of this bias in human analysts. A prototype collaborative visualization tool was developed by considering the plausible cognitive limitations contributing to the bias to investigate whether a cognitive engineering-driven visualization tool can help mitigate the bias in comparison to off-the-shelf tools. It was found that participant teams conducting the collaborative detection tasks as part of forensics analysis, experience the information pooling bias affecting their performance. Results indicate that cognitive friendly visualizations can help mitigate the effect of this bias in cyber defense analysts. Agent-based modeling produced insights on internal cognitive processes that might be contributing to this bias which could be leveraged in building future visualizations. This work has multiple implications including the development of new knowledge about the science of cyber defense teamwork, a demonstration of the advantage of developing tools using a cognitive engineering approach, a demonstration of the advantage of using a hybrid cognitive engineering methodology to study teams in general and finally, a demonstration of the effect of effective teamwork on cyber defense performance.
Date Created
2014
Agent

Flexible analyst defined viewpoint for malware relationship analysis

153147-Thumbnail Image.png
Description
The rate at which new malicious software (Malware) is created is consistently increasing each year. These new malwares are designed to bypass the current anti-virus countermeasures employed to protect computer systems. Security Analysts must understand the nature and intent of

The rate at which new malicious software (Malware) is created is consistently increasing each year. These new malwares are designed to bypass the current anti-virus countermeasures employed to protect computer systems. Security Analysts must understand the nature and intent of the malware sample in order to protect computer systems from these attacks. The large number of new malware samples received daily by computer security companies require Security Analysts to quickly determine the type, threat, and countermeasure for newly identied samples. Our approach provides for a visualization tool to assist the Security Analyst in these tasks that allows the Analyst to visually identify relationships between malware samples.

This approach consists of three steps. First, the received samples are processed by a sandbox environment to perform a dynamic behavior analysis. Second, the reports of the dynamic behavior analysis are parsed to extract identifying features which are matched against other known and analyzed samples. Lastly, those matches that are determined to express a relationship are visualized as an edge connected pair of nodes in an undirected graph.
Date Created
2014
Agent

Towards demographic information release in LBS k-Anonymization

153126-Thumbnail Image.png
Description
The increasing number of continually connected mobile persons has created an environment conducive to real time user data gathering for many uses both public and private in nature. Publicly, one can envision no longer requiring a census to determine the

The increasing number of continually connected mobile persons has created an environment conducive to real time user data gathering for many uses both public and private in nature. Publicly, one can envision no longer requiring a census to determine the demographic composition of the country and its sub regions. The information provided is vastly more up to date than that of a census and allows civil authorities to be more agile and preemptive with planning. Privately, advertisers take advantage of a persons stated opinions, demographics, and contextual (where and when) information in order to formulate and present pertinent offers.

Regardless of its use this information can be sensitive in nature and should therefore be under the control of the user. Currently, a user has little say in the manner that their information is processed once it has been released. An ad-hoc approach is currently in use, where the location based service providers each maintain their own policy over personal information usage.

In order to allow more user control over their personal information while still providing for targeted advertising, a systematic approach to the release of the information is needed. It is for that reason we propose a User-Centric Context Aware Spatiotemporal Anonymization framework. At its core the framework will unify the current spatiotemporal anonymization with that of traditional anonymization so that user specified anonymization requirement is met or exceeded while allowing for more demographic information to be released.
Date Created
2014
Agent

Towards seamless and secure mobile authentication

153056-Thumbnail Image.png
Description
With the rise of mobile technology, the personal lives and sensitive information of everyday citizens are carried about without a thought to the risks involved. Despite this high possibility of harm, many fail to use simple security to protect themselves

With the rise of mobile technology, the personal lives and sensitive information of everyday citizens are carried about without a thought to the risks involved. Despite this high possibility of harm, many fail to use simple security to protect themselves because they feel the benefits of securing their devices do not outweigh the cost to usability. The main issue is that beyond initial authentication, sessions are maintained using optional timeout mechanisms where a session will end if a user is inactive for a period of time. This interruption-based form of continuous authentication requires constant user intervention leading to frustration, which discourages its use. No solution currently exists that provides an implementation beyond the insecure and low usability of simple timeout and re-authentication. This work identifies the flaws of current mobile authentication techniques and provides a new solution that is not limiting to the user, has a system for secure, active continuous authentication, and increases the usability and security over current methods.
Date Created
2014
Agent

Firewall rule set analysis and visualization

153041-Thumbnail Image.png
Description
A firewall is a necessary component for network security and just like any regular equipment it requires maintenance. To keep up with changing cyber security trends and threats, firewall rules are modified frequently. Over time such modifications increase the complexity,

A firewall is a necessary component for network security and just like any regular equipment it requires maintenance. To keep up with changing cyber security trends and threats, firewall rules are modified frequently. Over time such modifications increase the complexity, size and verbosity of firewall rules. As the rule set grows in size, adding and modifying rule becomes a tedious task. This discourages network administrators to review the work done by previous administrators before and after applying any changes. As a result the quality and efficiency of the firewall goes down.

Modification and addition of rules without knowledge of previous rules creates anomalies like shadowing and rule redundancy. Anomalous rule sets not only limit the efficiency of the firewall but in some cases create a hole in the perimeter security. Detection of anomalies has been studied for a long time and some well established procedures have been implemented and tested. But they all have a common problem of visualizing the results. When it comes to visualization of firewall anomalies, the results do not fit in traditional matrix, tree or sunburst representations.

This research targets the anomaly detection and visualization problem. It analyzes and represents firewall rule anomalies in innovative ways such as hive plots and dynamic slices. Such graphical representations of rule anomalies are useful in understanding the state of a firewall. It also helps network administrators in finding and fixing the anomalous rules.
Date Created
2014
Agent

Discovering and using patterns for countering security challenges

153032-Thumbnail Image.png
Description
Most existing security decisions for both defending and attacking are made based on some deterministic approaches that only give binary answers. Even though these approaches can achieve low false positive rate for decision making, they have high false negative rates

Most existing security decisions for both defending and attacking are made based on some deterministic approaches that only give binary answers. Even though these approaches can achieve low false positive rate for decision making, they have high false negative rates due to the lack of accommodations to new attack methods and defense techniques. In this dissertation, I study how to discover and use patterns with uncertainty and randomness to counter security challenges. By extracting and modeling patterns in security events, I am able to handle previously unknown security events with quantified confidence, rather than simply making binary decisions. In particular, I cope with the following four real-world security challenges by modeling and analyzing with pattern-based approaches: 1) How to detect and attribute previously unknown shellcode? I propose instruction sequence abstraction that extracts coarse-grained patterns from an instruction sequence and use Markov chain-based model and support vector machines to detect and attribute shellcode; 2) How to safely mitigate routing attacks in mobile ad hoc networks? I identify routing table change patterns caused by attacks, propose an extended Dempster-Shafer theory to measure the risk of such changes, and use a risk-aware response mechanism to mitigate routing attacks; 3) How to model, understand, and guess human-chosen picture passwords? I analyze collected human-chosen picture passwords, propose selection function that models patterns in password selection, and design two algorithms to optimize password guessing paths; and 4) How to identify influential figures and events in underground social networks? I analyze collected underground social network data, identify user interaction patterns, and propose a suite of measures for systematically discovering and mining adversarial evidence. By solving these four problems, I demonstrate that discovering and using patterns could help deal with challenges in computer security, network security, human-computer interaction security, and social network security.
Date Created
2014
Agent