Boosting Brain Connectome Classification Accuracy in Alzheimer's Disease Using Higher-Order Singular Value Decomposition

128112-Thumbnail Image.png
Description

Alzheimer's disease (AD) is a progressive brain disease. Accurate detection of AD and its prodromal stage, mild cognitive impairment (MCI), are crucial. There is also a growing interest in identifying brain imaging biomarkers that help to automatically differentiate stages of

Alzheimer's disease (AD) is a progressive brain disease. Accurate detection of AD and its prodromal stage, mild cognitive impairment (MCI), are crucial. There is also a growing interest in identifying brain imaging biomarkers that help to automatically differentiate stages of Alzheimer's disease. Here, we focused on brain structural networks computed from diffusion MRI and proposed a new feature extraction and classification framework based on higher order singular value decomposition and sparse logistic regression. In tests on publicly available data from the Alzheimer's Disease Neuroimaging Initiative, our proposed framework showed promise in detecting brain network differences that help in classifying different stages of Alzheimer's disease.

Date Created
2015-07-24
Agent

Influence of APOE Genotype on Hippocampal Atrophy Over Time - An N=1925 Surface-Based ADNI Study

128842-Thumbnail Image.png
Description

The apolipoprotein E (APOE) e4 genotype is a powerful risk factor for late-onset Alzheimer’s disease (AD). In the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort, we previously reported significant baseline structural differences in APOE e4 carriers relative to non-carriers, involving the

The apolipoprotein E (APOE) e4 genotype is a powerful risk factor for late-onset Alzheimer’s disease (AD). In the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort, we previously reported significant baseline structural differences in APOE e4 carriers relative to non-carriers, involving the left hippocampus more than the right—a difference more pronounced in e4 homozygotes than heterozygotes. We now examine the longitudinal effects of APOE genotype on hippocampal morphometry at 6-, 12- and 24-months, in the ADNI cohort. We employed a new automated surface registration system based on conformal geometry and tensor-based morphometry. Among different hippocampal surfaces, we computed high-order correspondences, using a novel inverse-consistent surface-based fluid registration method and multivariate statistics consisting of multivariate tensor-based morphometry (mTBM) and radial distance. At each time point, using Hotelling’s T2 test, we found significant morphological deformation in APOE e4 carriers relative to non-carriers in the full cohort as well as in the non-demented (pooled MCI and control) subjects at each follow-up interval. In the complete ADNI cohort, we found greater atrophy of the left hippocampus than the right, and this asymmetry was more pronounced in e4 homozygotes than heterozygotes. These findings, combined with our earlier investigations, demonstrate an e4 dose effect on accelerated hippocampal atrophy, and support the enrichment of prevention trial cohorts with e4 carriers.

Date Created
2016-04-11
Agent

Association Between an Alzheimer’s Disease-Related Index and APOE ε4 Gene Dose

128935-Thumbnail Image.png
Description

Background: We introduced a hypometabolic convergence index (HCI) to characterize in a single measurement the extent to which a person’s fluorodeoxyglucose positron emission tomogram (FDG PET) corresponds to that in Alzheimer’s disease (AD). Apolipoprotein E ε4 (APOE ε4) gene dose is

Background: We introduced a hypometabolic convergence index (HCI) to characterize in a single measurement the extent to which a person’s fluorodeoxyglucose positron emission tomogram (FDG PET) corresponds to that in Alzheimer’s disease (AD). Apolipoprotein E ε4 (APOE ε4) gene dose is associated with three levels of risk for late-onset AD. We explored the association between gene dose and HCI in cognitively normal ε4 homozygotes, heterozygotes, and non-carriers.

Methods: An algorithm was used to characterize and compare AD-related HCIs in cognitively normal individuals, including 36 ε4 homozygotes, 46 heterozygotes, and 78 non-carriers.

Results: These three groups differed significantly in their HCIs (ANOVA, p = 0.004), and there was a significant association between HCIs and gene dose (linear trend, p = 0.001).

Conclusions: The HCI is associated with three levels of genetic risk for late-onset AD. This supports the possibility of using a single FDG PET measurement to help in the preclinical detection and tracking of AD.

Date Created
2013-06-26
Agent