Conditional Handicaps in Exuberant Lizards: Bright Color in Aggressive Males Is Correlated with High Levels of Free Radicals

127941-Thumbnail Image.png
Description

The maintenance of genetic variation and signal honesty may be explained, in part, through the genic capture hypothesis in sexual selection biology. Polygenic traits, like body condition, could help maintain variation in signaling traits under strong, directional sexual selection while

The maintenance of genetic variation and signal honesty may be explained, in part, through the genic capture hypothesis in sexual selection biology. Polygenic traits, like body condition, could help maintain variation in signaling traits under strong, directional sexual selection while maintaining signal honesty. Here we consider the genic capture hypothesis in a study of morph-specific condition and free radical effects on signaling traits (head coloration) in males of a polymorphic lizard, the Australian painted dragon (Ctenophorus pictus). Males differ in head color (red, orange, yellow, and a “blue” morph that has no yellow or red pigments). The red and yellow morphs were the first described and we have previously demonstrated that red morphs are aggressive and dominant over yellow morphs that are better at sperm completion than the red morphs. Body condition varied significantly in its relationship with superoxide among the four morphs, with males in better condition showing higher superoxide levels in “yellow-orange-reds” morphs (least so in red morphs). Blue morphs contrasted markedly by showing lower superoxide levels in males in better condition, perhaps facilitated by no (or reduced) dermal deposition of pigmentation on the head. Color degradation with loss in condition from yellow to red morphs, suggesting that red morphs are better able to maintain color with superoxide acting as a potential handicap. This result is consistent with condition-dependent signal expression and the genic capture hypothesis; males with the more pronounced signal carry a higher potential cost (higher superoxide levels) when being in better body condition, while maintaining more vivid coloration (the condition-dependent trait).

Date Created
2017-02-01
Agent

Parasites in the City: Degree of Urbanization Predicts Poxvirus and Coccidian Infections in House Finches (Haemorhous Mexicanus)

128799-Thumbnail Image.png
Description

Background: Urbanization can strongly impact the physiology, behavior, and fitness of animals. Conditions in cities may also promote the transmission and success of animal parasites and pathogens. However, to date, no studies have examined variation in the prevalence or severity of

Background: Urbanization can strongly impact the physiology, behavior, and fitness of animals. Conditions in cities may also promote the transmission and success of animal parasites and pathogens. However, to date, no studies have examined variation in the prevalence or severity of several distinct pathogens/parasites along a gradient of urbanization in animals or if these infections increase physiological stress in urban populations.

Methodology/Principal Findings: Here, we measured the prevalence and severity of infection with intestinal coccidians (Isospora sp.) and the canarypox virus (Avipoxvirus) along an urban-to-rural gradient in wild male house finches (Haemorhous mexicanus). In addition, we quantified an important stress indicator in animals (oxidative stress) and several axes of urbanization, including human population density and land-use patterns within a 1 km radius of each trapping site. Prevalence of poxvirus infection and severity of coccidial infection were significantly associated with the degree of urbanization, with an increase of infection in more urban areas. The degrees of infection by the two parasites were not correlated along the urban-rural gradient. Finally, levels of oxidative damage in plasma were not associated with infection or with urbanization metrics.

Conclusion/Significance: These results indicate that the physical presence of humans in cities and the associated altered urban landscape characteristics are associated with increased infections with both a virus and a gastrointestinal parasite in this common songbird resident of North American cities. Though we failed to find elevations in urban- or parasite/pathogen-mediated oxidative stress, humans may facilitate infections in these birds via bird feeders (i.e. horizontal disease transmission due to unsanitary surfaces and/or elevations in host population densities) and/or via elevations in other forms of physiological stress (e.g. corticosterone, nutritional).

Date Created
2014-02-04
Agent

Song Characteristics Track Bill Morphology Along a Gradient of Urbanization in House Finches (Haemorhous Mexicanus)

Description

Introduction: Urbanization can considerably impact animal ecology, evolution, and behavior. Among the new conditions that animals experience in cities is anthropogenic noise, which can limit the sound space available for animals to communicate using acoustic signals. Some urban bird species increase

Introduction: Urbanization can considerably impact animal ecology, evolution, and behavior. Among the new conditions that animals experience in cities is anthropogenic noise, which can limit the sound space available for animals to communicate using acoustic signals. Some urban bird species increase their song frequencies so that they can be heard above low-frequency background city noise. However, the ability to make such song modifications may be constrained by several morphological factors, including bill gape, size, and shape, thereby limiting the degree to which certain species can vocally adapt to urban settings. We examined the relationship between song characteristics and bill morphology in a species (the house finch, Haemorhous mexicanus) where both vocal performance and bill size are known to differ between city and rural animals.

Results: We found that bills were longer and narrower in more disturbed, urban areas. We observed an increase in minimum song frequency of urban birds, and we also found that the upper frequency limit of songs decreased in direct relation to bill morphology.

Conclusions: These findings are consistent with the hypothesis that birds with longer beaks and therefore longer vocal tracts sing songs with lower maximum frequencies because longer tubes have lower-frequency resonances. Thus, for the first time, we reveal dual constraints (one biotic, one abiotic) on the song frequency range of urban animals. Urban foraging pressures may additionally interact with the acoustic environment to shape bill traits and vocal performance.

Date Created
2014-11-12
Agent