Nanomaterials for Energy and Environmental Applications

128228-Thumbnail Image.png
Description

Nanomaterials enabled technologies have been seamlessly integrated into applications such as aviation and space, chemical industry, optics, solar hydrogen, fuel cell, batteries, sensors, power generation, aeronautic industry, building/construction industry, automotive engineering, consumer electronics, thermoelectric devices, pharmaceuticals, and cosmetic industry. Clean

Nanomaterials enabled technologies have been seamlessly integrated into applications such as aviation and space, chemical industry, optics, solar hydrogen, fuel cell, batteries, sensors, power generation, aeronautic industry, building/construction industry, automotive engineering, consumer electronics, thermoelectric devices, pharmaceuticals, and cosmetic industry. Clean energy and environmental applications often demand the development of novel nanomaterials that can provide shortest reaction pathways for the enhancement of reaction kinetics. Understanding the physicochemical, structural, microstructural, surface, and interface properties of nanomaterials is vital for achieving the required efficiency, cycle life, and sustainability in various technological applications. Nanomaterials with specific size and shape such as nanotubes, nanofibers, nanowires, nanocones, nanocomposites, nanorods, nanoislands, nanoparticles, nanospheres, and nanoshells to provide unique properties can be synthesized by tuning the process conditions.

Date Created
2015-11-23
Agent

Design and development of electrochemical cell for converting carbon dioxide to useful fuel

154987-Thumbnail Image.png
Description
The majority of the natural issues the world is confronting today is because of our dependence on fossil fuels and the increase in CO2 emissions. The alternative solution for this problem is the use of renewable energy for the energy

The majority of the natural issues the world is confronting today is because of our dependence on fossil fuels and the increase in CO2 emissions. The alternative solution for this problem is the use of renewable energy for the energy production, but these are uncertain energy sources. So, the combination of reducing carbon dioxide with the use of renewable energy sources is the finest way to mitigate this problem. Electrochemical reduction of carbon dioxide (ERC) is a reasonable approach as it eliminates as well as utilizes the carbon dioxide as a source for generating valuable products.

In this study, development of electrochemical reactor, characterization of membrane electrode assembly (MEA) and analysis of electrochemical reduction of carbon dioxide (ERC) is discussed. Electrodes using various catalyst materials in solid polymer based electrolyte (SPE) along with gas diffusion layer (GDL) are developed. The prepared membrane electrodes are characterized under ex-situ conditions using scanning electron microscopy (SEM). The membranes are later placed in the electrochemical reactor for the in-situ characterization to assess the performance of the membrane electrode assembly.

The electrodes are processed by airbrushing the metal particles on the nafion membrane and then are electrochemically characterized by linear sweep voltammetry. The anode was kept constant with platinum whereas the cathode was examined with compositions of different metal catalysts. The products formed subsequently are analyzed using gas chromatography (GC) and Residual gas analysis (RGA). Hydrogen (H2) and carbon monoxide (CO) are detected using GC while the hydrocarbons are detected by performing quantitative analysis using RGA. The preliminary experiments gave very encouraging results. However, more work needs to be done to achieve new heights.
Date Created
2016
Agent

Performance evaluation and characterization of lithium-ion cells under simulated PHEVs' drive cycles

154802-Thumbnail Image.png
Description
Increasing demand for reducing the stress on fossil fuels has motivated automotive industries to shift towards sustainable modes of transport through electric and hybrid electric vehicles. Most fuel efficient cars of year 2016 are hybrid vehicles as reported by environmental

Increasing demand for reducing the stress on fossil fuels has motivated automotive industries to shift towards sustainable modes of transport through electric and hybrid electric vehicles. Most fuel efficient cars of year 2016 are hybrid vehicles as reported by environmental protection agency. Hybrid vehicles operate with internal combustion engine and electric motors powered by batteries, and can significantly improve fuel economy due to downsizing of the engine. Whereas, Plug-in hybrids (PHEVs) have an additional feature compared to hybrid vehicles i.e. recharging batteries through external power outlets. Among hybrid powertrains, lithium-ion batteries have emerged as a major electrochemical storage source for propulsion of vehicles.

In PHEVs, batteries operate under charge sustaining and charge depleting mode based on torque requirement and state of charge. In the current article, 26650 lithium-ion cells were cycled extensively at 25 and 50 oC under charge sustaining mode to monitor capacity and cell impedance values followed by analyzing the Lithium iron phosphate (LiFePO4) cathode material by X-ray diffraction analysis (XRD). High frequency resistance measured by electrochemical impedance spectroscopy was found to increase significantly under high temperature cycling, leading to power fading. No phase change in LiFePO4 cathode material is observed after 330 cycles at elevated temperature under charge sustaining mode from the XRD analysis. However, there was significant change in crystallite size of the cathode active material after charge/discharge cycling with charge sustaining mode. Additionally, 18650 lithium-ion cells were tested under charge depleting mode to monitor capacity values.
Date Created
2016
Agent