Since the Acquired Immune Deficiency Syndrome (AIDS) crisis began in the early 1980s, there has been a significant amount of stigma attached to the disease and the virus that causes it, Human Immunodeficiency Virus (HIV). At the time, HIV/AIDS was…
Since the Acquired Immune Deficiency Syndrome (AIDS) crisis began in the early 1980s, there has been a significant amount of stigma attached to the disease and the virus that causes it, Human Immunodeficiency Virus (HIV). At the time, HIV/AIDS was viewed as a death sentence. A large part of the stigma came from the fact that in the early days of the crisis, AIDS patients were predominantly part of the LGBTQ+ community. With the discovery of effective antiretroviral therapies, today HIV can be thought of as a preventable, yet manageable, chronic illness, although it remains a huge public health concern (About HIV/AIDS, 2018). While the virus is now rarely viewed as a death sentence, there is still considerable stigma that surrounds people living with HIV/AIDS (PLWHA). Research shows that the shows and movies people watch can affect their attitudes on a variety of issues, and HIV is no exception. Because HIV is such a big threat to public health, and because people often adopt views they see in media, analyzing the ways shows and movies portray PLWHA is an important aspect in understanding where stigma surrounding HIV/AIDS comes from. The writers behind today's HIV+ characters on television and in movies all seemingly made an effort to decrease stigma, but they went about it in different ways, and with varying amounts of success. A common method to dispel stigma was to use the entertainment-education method (Singhal & Rogers, 1999), which in these cases means characters had discussions about topics like safe sex, Pre-Exposure Prophylaxis (PrEP), and the importance of getting tested. A few shows showed serodiscordant couples, which was also effective at fighting stigma. In contrast, by trying to be representative of PLWHA, some shows actually contributed to the stereotypes behind the stigma, or had characters be openly stigmatizing towards PLWHA. After analyzing what I found the shows and movies did well and what they did poorly, I'll analyze why it is important that shows maintained historical accuracy, and how doing so appeared to fight the stigma associated with HIV/AIDS. I will also evaluate what's missing \u2014 such as which high-risk groups are not represented. Ultimately, this thesis will argue that shows and movies made in the last 12 years all aimed to decrease stigma, through a variety of techniques.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Necrotic enteritis (NE) is caused by type A strains of the bacterium Clostridium perfringens, leading to an estimated 2 billion dollar global economic loss in the poultry industry annually. Traditionally, NE has been effectively controlled by antibiotics added to the…
Necrotic enteritis (NE) is caused by type A strains of the bacterium Clostridium perfringens, leading to an estimated 2 billion dollar global economic loss in the poultry industry annually. Traditionally, NE has been effectively controlled by antibiotics added to the diet of poultry. Concerns about increasing antibiotic resistance of poultry and human based pathogens have led to the consideration of alternative approaches for controlling disease, such as vaccination. NE causing strains of C. perfringens produce two major toxins, α-toxin and NetB. Immune responses against either toxin can provide partial protection against NE. We have developed a fusion protein combining a non-toxic carboxy-terminal domain of the α-toxin (PlcC) and an attenuated, mutant form of NetB (NetB-W262A) for use as a vaccine antigen to immunize poultry against NE. We utilized a DNA sequence that was codon-optimized for Nicotiana benthamiana to enable high levels of expression. The 6-His tagged PlcC-NetB fusion protein was synthesized in N. benthamiana using a geminiviral replicon transient expression system. The fusion protein was purified by metal affinity chromatography and used to immunize broiler birds. Immunized birds produced a strong serum IgY response against both the plant produced PlcC-NetB protein and against bacterially produced His-PlcC and His-NetB. However, the PlcC-NetB fusion had antibody titers four times that of the bacterially produced toxoids alone. Immunized birds were significantly protected against a subsequent in-feed challenge with virulent C. perfringens when treated with the fusion protein. These results indicate that a plant-produced PlcC-NetB is a promising vaccine candidate for controlling NE in poultry.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
An aim of fundamental immunology is quantifying the diversity of the T cell receptor (TCR) repertoire to elucidate the vast recognition by T cells for protection against pathogen and cancer. The utilization of DNA origami nanostructures engineered to capture single…
An aim of fundamental immunology is quantifying the diversity of the T cell receptor (TCR) repertoire to elucidate the vast recognition by T cells for protection against pathogen and cancer. The utilization of DNA origami nanostructures engineered to capture single cell paired TCR mRNA sequences has transformed the financial and time requirements of repertoire establishment. To further support this protocol, confocal laser scanning microscopy was implemented following transfection to visualize the stability of the DNA origami within primary immune lymphocytes.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Glioblastoma multiforme (GBM) is an aggressive malignant brain tumor with a median prognosis of 14 months. Human hairless protein (HR) is a 130 kDa nuclear transcription factor that plays a critical role in skin and hair function but was found…
Glioblastoma multiforme (GBM) is an aggressive malignant brain tumor with a median prognosis of 14 months. Human hairless protein (HR) is a 130 kDa nuclear transcription factor that plays a critical role in skin and hair function but was found to be highly expressed in neural tissue as well. The expression of HR in GBM tumor cells is significantly decreased compared to the normal brain tissue and low levels of HR expression is associated with shortened patient survival. We have recently reported that HR is a DNA binding phosphoprotein, which binds to p53 protein and p53 responsive element (p53RE) in vitro and in intact cells. We hypothesized that HR can regulate p53 downstream target genes, and consequently affects cellular function and activity. To test the hypothesis, we overexpressed HR in normal human embryonic kidney HEK293 and GBM U87MG cell lines and characterized these cells by analyzing p53 target gene expression, viability, cell-cycle arrest, and apoptosis. The results revealed that the overexpressed HR not only regulates p53-mediated target gene expression, but also significantly inhibit cell viability, induced early apoptosis, and G2/M cell cycle arrest in U87MG cells, compared to mock groups. Translating the knowledge gained from this research on the connections between HR and GBM could aid in identifying novel therapies to circumvent GBM progression or improve clinical outcome.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Background: Virus infections often result in quasispecies of viral strains that can have dramatic impacts on disease outcomes. However, sequencing of viruses to determine strain composition is time consuming and often cost-prohibitive. Rapid, cost-effective methods are needed for accurate measurement of…
Background: Virus infections often result in quasispecies of viral strains that can have dramatic impacts on disease outcomes. However, sequencing of viruses to determine strain composition is time consuming and often cost-prohibitive. Rapid, cost-effective methods are needed for accurate measurement of virus diversity to understand virus evolution and can be useful for experimental systems.
Methods: We have developed a novel molecular method for sequence-specific detection of RNA virus genetic variants called Tentacle Probes. The probes are modified molecular beacons that have dramatically improved false positive rates and specificity in routine qPCR. To validate this approach, we have designed Tentacle Probes for two different strains of Lymphocytic Choriomeningitis Virus (LCMV) that differ by only 3 nucleotide substitutions, the parental Armstrong and the more virulent Clone-13 strain. One of these mutations is a missense mutation in the receptor protein GP1 that leads to the Armstrong strain to cause an acute infection and Clone-13 to cause a chronic infection instead. The probes were designed using thermodynamic calculations for hybridization between target or non-target sequences and the probe.
Results: Using this approach, we were able to distinguish these two strains of LCMV individually by a single nucleotide mutation. The assay showed high reproducibility among different concentrations of viral cDNA, as well as high specificity and sensitivity, especially for the Clone-13 Tentacle Probe. Furthermore, in virus mixing experiments we were able to detect less than 10% of Clone-13 cDNA diluted in Armstrong cDNA.
Conclusions: Thus, we have developed a fast, cost-effective approach for identifying Clone-13 strain in a mix of other LCMV strains.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Identifying immunoreactive cytotoxic T lymphocytes (CTLs) by current technologies (cytokine secretion, intracellular cytokine, ELISPOT, and MHC tetramer assays) is often difficult when probing for multiple target antigens. CTLs activate and induce apoptosis of pathogenic cells when T-cell receptors (TCRs) specifically…
Identifying immunoreactive cytotoxic T lymphocytes (CTLs) by current technologies (cytokine secretion, intracellular cytokine, ELISPOT, and MHC tetramer assays) is often difficult when probing for multiple target antigens. CTLs activate and induce apoptosis of pathogenic cells when T-cell receptors (TCRs) specifically bind to antigenic peptides and major histocompatibility complexes (pMHCs) presented on the target cell’s surface. Flow cytometric MHC class I tetramer assays allow for the direct quantification and sorting of most CD8+ T lymphocytes whose TCRs recognize bound peptides, regardless of effector function. Class I tetramers are traditionally produced using BL21-DE3 E. coli expression, denaturation and folding in vitro, which is technically challenging, time-consuming, and low-throughput. We are developing an assay amenable to rapid, high-throughput screening of peptide libraries to characterize and quantitate antigen-specific CTLs in peripheral blood mononuclear cells (PBMCs). Baculovirus expression systems, utilizing host eukaryotic chaperones and isomerases, are capable of producing soluble, properly-folded protein complexes with high yields. The HLA-A*0201 heavy chain and beta-2-microglobulin genes were cloned into pIEx baculovirus expression vectors. Recombinant HLA-A*0201 and β2m viruses were synthesized using the BacMagic-3 DNA/pIEx method and transfected into Spodoptera frugiperda (Sf9) cells, and protein expression was confirmed by Western blot. To prepare T cells for testing, PBMCs from a healthy HLA-A2+ donor were collected and pulsed with DMSO control or CEF peptide pool (a mixture of CMV-, EBV-, and Flu-specific HLA class I epitopes). After 5 days, the CD8+ and CD8- fractions were sorted by MACS-based magnetic separation, and the frequency of FluM1-specific lymphocytes in the CD8+ populations was determined (0.1% of DMSO control vs. 0.772% of CEF-pulsed cells) using a commercial tetramer. We are optimizing HLA-A*0201 and β2m baculovirus co-infection ratios and evaluating the efficiency of intracellular MHC folding.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Memory CD8+ T-cells can persist in the absence of antigen, primed for immediate activation and proliferation if later exposed to the same antigen. These cytotoxic lymphocytes provide long-term immunity following an acute infection. Studies have observed that intermediate levels of…
Memory CD8+ T-cells can persist in the absence of antigen, primed for immediate activation and proliferation if later exposed to the same antigen. These cytotoxic lymphocytes provide long-term immunity following an acute infection. Studies have observed that intermediate levels of general T cell transfer prior to infection may cause an inappropriate response resulting in increased pathology rather than prevention. Therefore, our study focused on a memory CD8 T-cell therapy using lymphocytic choriomeningitis virus (LCMV) specific splenocytes, which activate and proliferate at an accelerated pace compared to that of naive T-cells. LCMV is a natural murine pathogen which also poses a zoonotic infection threat to humans, and the effect of immune cell vaccination therapies for LCMV is not fully understood. We observed the effect of multiple memory CD8 T cell dosage levels on overall disease and memory CD8 T-cell response to the virus. Infection by exposure to a carrier was shown to have a reduced impact on mice receiving higher doses of memory T cells prior to infection compared to mice receiving less or no memory cells. Higher presence of activated memory cells were shown to correlate with less disease-related weight loss and accelerated recovery times. Survival rate after exposure to carriers was not shown to be affected by dosage level, warranting further research regarding the prevalence of the immunopathology observed in other studies in natural murine transmission models.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Pathogens such as lymphocytic choriomeningitis virus (LCMV) cause abnormalities in the nervous system of developing mice and humans. While humans are able to recover from infection and clear the virus, the mouse immune system tolerates the virus and lifelong infection…
Pathogens such as lymphocytic choriomeningitis virus (LCMV) cause abnormalities in the nervous system of developing mice and humans. While humans are able to recover from infection and clear the virus, the mouse immune system tolerates the virus and lifelong infection ensues. In order to understand the factors driving LCMV evolution and evaluate its neuropathogenesis, a mouse model was needed. To establish congenital infection, newborn C57BL/6J mice were intra-cerebrally (i.c.) injected with 1 x 103 PFU LCMV Armstrong. Mice failed to thrive, resulting in a linear reduction in survival over the following two weeks and overall survival of 13%. Surviving mice did not have virus in their circulation after thirty days. As an alternative, 500 PFU of LCMV Armstrong was injected intraperitoneally (i.p.) into other litters. While this was associated with significantly reduced mortality, no mice in this group developed persistent infection either. ELISAs revealed that the mothers of injected pups developed a robust humoral response, confirming earlier reports that contact-associated acute infection occurs (Hotchin, 1971). In addition, the offspring of two litters of mice (out of six tested) also had antibodies to the virus, but at slightly lower titers. This indicates that the humoral response of the mothers may play a role in the neonatal clearance of infection. A higher titer of LCMV in i.p. injections may be necessary to overcome these barriers and establish chronic infection. In contrast, a lower dose of LCMV is recommended for i.c. injections, as the mortality seemed directly linked to the effects of the virus on offspring growth and development. Exposure to the virus in utero may also be necessary to increase survival and the likelihood of chronic infection.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
The p53 gene functions as a tumor suppressor that inhibits proliferation, regulates apoptosis, DNA repair, and normal cell cycle arrest. Mutation of the p53 gene is linked to be prevalent in 50% of all human cancers. In this paper, we…
The p53 gene functions as a tumor suppressor that inhibits proliferation, regulates apoptosis, DNA repair, and normal cell cycle arrest. Mutation of the p53 gene is linked to be prevalent in 50% of all human cancers. In this paper, we are exploring triple negative breast cancer and the effects of simvastatin on tumor growth and survival. Simvastatin is a drug that is primarily used to treat high cholesterol and heart disease. Simvastatin is unique because it is able to inhibit protein prenylation through regulation of the mevalonate pathway. This makes it a potential targeted drug for therapy against p53 mutant cancer. The mechanism behind this is hypothesized to be correlated to aberrant activation of the Ras pathway. The Ras subfamily functions to transcriptionally regulate cell growth and survival, and will therefore allow for a tumor to thrive if the pathway is continually and abnormally activated. The Ras protein has to be prenylated in order for activation of this pathway to occur, making statin drug treatment a viable option as a cancer treatment. This is because it acts as a regulator of the mevalonate pathway which is upstream of protein prenylation. It is thus vital to understand these pathways at both the gene and protein level in different p53 mutants to further understand if simvastatin is indeed a drug with anti-cancer properties and can be used to target cancers with p53 mutation. The goal of this project is to study the biochemistry behind the mutation of p53's sensitivity to statin. With this information we can create a possible signature for those who could benefit from Simvastatin drug treatment as a possible targeted treatment for p53 mutant cancers.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
PD-L1 blockade has shown recent success in cancer therapy and cancer vaccine regimens. One approach for anti-PD-L1 antibodies has been their application as adjuvants for cancer vaccines. Given the disadvantages of such antibodies, including long half-life and adverse events related…
PD-L1 blockade has shown recent success in cancer therapy and cancer vaccine regimens. One approach for anti-PD-L1 antibodies has been their application as adjuvants for cancer vaccines. Given the disadvantages of such antibodies, including long half-life and adverse events related to their use, a novel strategy using synbodies in place of antibodies can be tested. Synbodies offer a variety of advantages, including shorter half-life, smaller size, and cheaper cost. Peptides that could bind PD-L1 were identified via peptide arrays and used to construct synbodies. These synbodies were tested with inhibition ELISA assays, SPR, and pull down assays. Additional flow cytometry analysis was done to determine the binding specificity of the synbodies to PD-L1 and the ability of those synbodies to inhibit the PD-L1/PD-1 interaction. Although analysis of permeabilized cells expressing PD-L1 indicated that the synbodies could successfully bind PD-L1, those results were not replicated in non-permeabilized cells. Further assays suggested that the binding of the synbodies was non-specific. Other tests were done to see if the synbodies could inhibit the PD-1/PD-L1 interaction. This assay did not yield any conclusive results and further experimentation is needed to determine the efficacy of the synbodies in inhibiting this interaction.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)