Network-Oriented Household Activity Pattern Problem for System Optimization

127869-Thumbnail Image.png
Description

The recently emerging trend of self-driving vehicles and information sharing technologies, made available by private technology vendors, starts creating a revolutionary paradigm shift in the coming years for traveler mobility applications. By considering a deterministic traveler decision making framework at

The recently emerging trend of self-driving vehicles and information sharing technologies, made available by private technology vendors, starts creating a revolutionary paradigm shift in the coming years for traveler mobility applications. By considering a deterministic traveler decision making framework at the household level in congested transportation networks, this paper aims to address the challenges of how to optimally schedule individuals’ daily travel patterns under the complex activity constraints and interactions. We reformulate two special cases of household activity pattern problem (HAPP) through a high-dimensional network construct, and offer a systematic comparison with the classical mathematical programming models proposed by Recker (1995). Furthermore, we consider the tight road capacity constraint as another special case of HAPP to model complex interactions between multiple household activity scheduling decisions, and this attempt offers another household-based framework for linking activity-based model (ABM) and dynamic traffic assignment (DTA) tools. Through embedding temporal and spatial relations among household members, vehicles and mandatory/optional activities in an integrated space-time-state network, we develop two 0-1 integer linear programming models that can seamlessly incorporate constraints for a number of key decisions related to vehicle selection, activity performing and ridesharing patterns under congested networks. The well-structured network models can be directly solved by standard optimization solvers, and further converted to a set of time-dependent state-dependent least cost path-finding problems through Lagrangian relaxation, which permit the use of computationally efficient algorithms on large-scale high-fidelity transportation networks.

Date Created
2017-06-15
Agent

MADM-Based Smart Parking Guidance Algorithm

127877-Thumbnail Image.png
Description

In smart parking environments, how to choose suitable parking facilities with various attributes to satisfy certain criteria is an important decision issue. Based on the multiple attributes decision making (MADM) theory, this study proposed a smart parking guidance algorithm by

In smart parking environments, how to choose suitable parking facilities with various attributes to satisfy certain criteria is an important decision issue. Based on the multiple attributes decision making (MADM) theory, this study proposed a smart parking guidance algorithm by considering three representative decision factors (i.e., walk duration, parking fee, and the number of vacant parking spaces) and various preferences of drivers. In this paper, the expected number of vacant parking spaces is regarded as an important attribute to reflect the difficulty degree of finding available parking spaces, and a queueing theory-based theoretical method was proposed to estimate this expected number for candidate parking facilities with different capacities, arrival rates, and service rates. The effectiveness of the MADM-based parking guidance algorithm was investigated and compared with a blind search-based approach in comprehensive scenarios with various distributions of parking facilities, traffic intensities, and user preferences. Experimental results show that the proposed MADM-based algorithm is effective to choose suitable parking resources to satisfy users’ preferences. Furthermore, it has also been observed that this newly proposed Markov Chain-based availability attribute is more effective to represent the availability of parking spaces than the arrival rate-based availability attribute proposed in existing research.

Date Created
2017-12-13
Agent

Improving Fine Control of Grasping Force During Hand–Object Interactions for a Soft Synergy-Inspired Myoelectric Prosthetic Hand

127888-Thumbnail Image.png
Description

The concept of postural synergies of the human hand has been shown to potentially reduce complexity in the neuromuscular control of grasping. By merging this concept with soft robotics approaches, a multi degrees of freedom soft-synergy prosthetic hand [SoftHand-Pro (SHP)]

The concept of postural synergies of the human hand has been shown to potentially reduce complexity in the neuromuscular control of grasping. By merging this concept with soft robotics approaches, a multi degrees of freedom soft-synergy prosthetic hand [SoftHand-Pro (SHP)] was created. The mechanical innovation of the SHP enables adaptive and robust functional grasps with simple and intuitive myoelectric control from only two surface electromyogram (sEMG) channels. However, the current myoelectric controller has very limited capability for fine control of grasp forces. We addressed this challenge by designing a hybrid-gain myoelectric controller that switches control gains based on the sensorimotor state of the SHP. This controller was tested against a conventional single-gain (SG) controller, as well as against native hand in able-bodied subjects. We used the following tasks to evaluate the performance of grasp force control: (1) pick and place objects with different size, weight, and fragility levels using power or precision grasp and (2) squeezing objects with different stiffness. Sensory feedback of the grasp forces was provided to the user through a non-invasive, mechanotactile haptic feedback device mounted on the upper arm. We demonstrated that the novel hybrid controller enabled superior task completion speed and fine force control over SG controller in object pick-and-place tasks. We also found that the performance of the hybrid controller qualitatively agrees with the performance of native human hands.

Date Created
2018-01-10
Agent

Implications of Stereotype Mosque Architecture on Sustainability

127889-Thumbnail Image.png
Description

Stereotypical construction of buildings, however convenient, poses its own set of challenges. It affects the sustainable development critically and can give rise to social, economic and environmental problems. In other words, same design of a building if repeated irrationally from

Stereotypical construction of buildings, however convenient, poses its own set of challenges. It affects the sustainable development critically and can give rise to social, economic and environmental problems. In other words, same design of a building if repeated irrationally from one place to another even within an identical climatic region gives rise to some grave problems which can compromise multiple dimensions of sustainability. Mosque architecture has some elements that have gradually become its identity. In this research different elements of repetition i.e. stereotype features in mosque architecture are explored. While using a case study approach this research is used to assess mosque projects in an urban region of Lahore, Pakistan. While considering the case studies the positive and negative effects of stereotype elements on three dimensions of sustainability are investigated.

Date Created
2016-05-20
Agent

Impacts of Aerosol Particles on the Microphysical and Radiative Properties of Stratocumulus Clouds Over the Southeast Pacific Ocean

127890-Thumbnail Image.png
Description

The southeast Pacific Ocean is covered by the world's largest stratocumulus cloud layer, which has a strong impact on ocean temperatures and climate in the region. The effect of anthropogenic sources of aerosol particles on the stratocumulus deck was investigated

The southeast Pacific Ocean is covered by the world's largest stratocumulus cloud layer, which has a strong impact on ocean temperatures and climate in the region. The effect of anthropogenic sources of aerosol particles on the stratocumulus deck was investigated during the VOCALS field experiment. Aerosol measurements below and above cloud were made with a ultra-high sensitivity aerosol spectrometer and analytical electron microscopy. In addition to more standard in-cloud measurements, droplets were collected and evaporated using a counterflow virtual impactor (CVI), and the non-volatile residual particles were analyzed.

Many flights focused on the gradient in cloud properties on an E-W track along 20° S from near the Chilean coast to remote areas offshore. Mean statistics, including their significance, from eight flights and many individual legs were compiled. Consistent with a continental source of cloud condensation nuclei, below-cloud accumulation-mode aerosol and droplet number concentration generally decreased from near shore to offshore. Single particle analysis was used to reveal types and sources of the enhanced particle number that influence droplet concentration. While a variety of particle types were found throughout the region, the dominant particles near shore were partially neutralized sulfates. Modeling and chemical analysis indicated that the predominant source of these particles in the marine boundary layer along 20° S was anthropogenic pollution from central Chilean sources, with copper smelters a relatively small contribution.

Cloud droplets were smaller in regions of enhanced particles near shore. However, physically thinner clouds, and not just higher droplet number concentrations from pollution, both contributed to the smaller droplets. Satellite measurements were used to show that cloud albedo was highest 500–1000 km offshore, and actually slightly lower closer to shore due to the generally thinner clouds and lower liquid water paths there. Thus, larger scale forcings that impact cloud macrophysical properties, as well as enhanced aerosol particles, are important in determining cloud droplet size and cloud albedo.

Differences in the size distribution of droplet residual particles and ambient aerosol particles were observed. By progressively excluding small droplets from the CVI sample, we were able to show that the larger drops, some of which may initiate drizzle, contain the largest aerosol particles. Geometric mean diameters of droplet residual particles were larger than those of the below-cloud and above cloud distributions. However, a wide range of particle sizes can act as droplet nuclei in these stratocumulus clouds. A detailed LES microphysical model was used to show that this can occur without invoking differences in chemical composition of cloud-nucleating particles.

Date Created
2013-03-05
Agent

Identifying the State of the Project Management Profession

127892-Thumbnail Image.png
Description

Project management has struggled with delivering low performing construction and information technology (IT or ICT) projects. Approximately 60% of construction projects are over budget, over schedule and have low customer satisfaction. The IT industry reports even worse performance for their

Project management has struggled with delivering low performing construction and information technology (IT or ICT) projects. Approximately 60% of construction projects are over budget, over schedule and have low customer satisfaction. The IT industry reports even worse performance for their projects. IT projects seem to be far less defined, leading to increased complexity. Documentation shows that companies do not have a successful methodology to track their performance and thus there is a lack of documented performance information to identify if their project management methodologies are delivering high quality and efficient projects. A literature research was performed on the most used Project Management (PM) methodologies worldwide. These PM methodologies were then compared based upon their characteristics and performance information to identify the most successful methodologies. The analysis of the results revealed that only one methodology had proven performance metrics on over 90% of its projects.

Date Created
2016-05-20
Agent

High-Mobility Hydrogenated Indium Oxide Without Introducing Water During Sputtering

127898-Thumbnail Image.png
Description

The key role of water to obtain high-mobility IO:H (hydrogenated indium oxide) layers has been well documented, but introducing the required tiny amount of water is technologically challenging. We first use simulations to evidence the key role of high mobility

The key role of water to obtain high-mobility IO:H (hydrogenated indium oxide) layers has been well documented, but introducing the required tiny amount of water is technologically challenging. We first use simulations to evidence the key role of high mobility for the transparent conductive oxide for high-efficiency crystalline silicon solar cells. Then, we investigate an approach to fabricate high-mobility IO:H that circumvent the introduction of water vapor, relying on water vapor from ambient air. A sputtering tool equipped with a residual gas analyzer allows partial pressure monitoring of hydrogen and water in the system, and to link the gas composition to the properties of the deposited films. To vary the residual water pressure, we varied the pumping time after opening the chamber and before starting the deposition to reach different base pressures (1. 10-5 mbar to 3. 10-7 mbar), which are mostly composed of residual water. An optimum base pressure around 3. 10-6 mbar - and not lower pressures - was found to yield the highest mobility values after annealing. An alternative approach by introducing a small flow of hydrogen together with argon and oxygen is also shown to provide promising results.

Date Created
2016-09-23
Agent

Generation and Characterization of Human Induced Pluripotent Stem Cell (hiPSC) Lines From an Alzheimer's Disease (ASUi003-A) and Non-Demented Control (ASUi004-A) Patient Homozygous for the Apolipoprotein e4 (APOE4) Risk Variant

127902-Thumbnail Image.png
Description

Although the majority of late-onset Alzheimer's disease (AD) patients are labeled sporadic, multiple genetic risk variants have been identified, the most powerful and prevalent of which is the e4 variant of the Apolipoprotein E (APOE) gene. Here, we generated human

Although the majority of late-onset Alzheimer's disease (AD) patients are labeled sporadic, multiple genetic risk variants have been identified, the most powerful and prevalent of which is the e4 variant of the Apolipoprotein E (APOE) gene. Here, we generated human induced pluripotent stem cell (hiPSC) lines from the peripheral blood mononuclear cells (PBMCs) of a clinically diagnosed AD patient [ASUi003-A] and a non-demented control (NDC) patient [ASUi004-A] homozygous for the APOE4 risk allele. These hiPSCs maintained their original genotype, expressed pluripotency markers, exhibited a normal karyotype, and retained the ability to differentiate into cells representative of the three germ layers.

Date Created
2017-07-10
Agent

A Generalizable Method for Estimating Household Energy by Neighborhoods in U.S. Urban Regions

127903-Thumbnail Image.png
Description

There is mounting evidence to suggest that the urban built form plays a crucial role in household energy consumption, hence planning energy efficient cities requires thoughtful design at multiple scales - from buildings, to neighborhoods, to urban regions. While data

There is mounting evidence to suggest that the urban built form plays a crucial role in household energy consumption, hence planning energy efficient cities requires thoughtful design at multiple scales - from buildings, to neighborhoods, to urban regions. While data on household energy use are essential for examining the energy implications of different built forms, few utilities providing power and gas offer such information at a granular scale. Therefore, researchers have used various estimation techniques to determine household and neighborhood scale energy use. In this study we develop a novel method for estimating household energy demand that can be applied to any urban region in the US with the help of publicly available data. To improve estimates of residential energy this paper describes a methodology that utilizes a matching algorithm to stitch together data from RECS with the Public Use Microdata Sample (PUMS) provided by the Bureau of Census. Our workflow statistically matches households in RECS and PUMS datasets based on the shared variables in both, so that total energy consumption in the RECS dataset can be mapped to the PUMS dataset. Following this mapping procedure, we generate synthetic households using processed PUMS data together with marginal totals from the American Community Survey (ACS) records. By aggregating energy consumptions of synthesized households, small area or neighborhood-based estimates of residential energy use can be obtained.

Date Created
2018-01-05
Agent

Fractography of a Neck Failure in a Double-Modular Hip Implant

127906-Thumbnail Image.png
Description

The tapered joints of modular hip implants are prone to fretting and crevice-corrosion. This can lead to total failure in under a year, especially for heavier, more active implant recipients. In this study, fractography of a failed Profemur Z implant

The tapered joints of modular hip implants are prone to fretting and crevice-corrosion. This can lead to total failure in under a year, especially for heavier, more active implant recipients. In this study, fractography of a failed Profemur Z implant showed that a life limiting fatigue crack was nucleated on the anterolateral surface of the implant's neck. The fatigue crack nucleation area appeared to have both more fretting damage and a higher corrosion rate than on other surfaces of the neck.

Date Created
2014-04-08
Agent