The Demographics of Polling Places

134091-Thumbnail Image.png
Description
Elections in the United States are highly decentralized with vast powers given to the states to control laws surrounding voter registration, primary procedures, and polling places even in elections of federal officials. There are many individual factors that predict a

Elections in the United States are highly decentralized with vast powers given to the states to control laws surrounding voter registration, primary procedures, and polling places even in elections of federal officials. There are many individual factors that predict a person's likelihood of voting including race, education, and age. Historically disenfranchised groups are still disproportionately affected by restrictive voter registration and ID laws which can suppress their turnout. Less understood is how election-day polling place accessibility affects turnout. Absentee and early voting increase accessibility for all voters, but 47 states still rely on election-day polling places. I study how the geographic allocation of polling places and the number of voters assigned to each (polling place load) in Maricopa County, Arizona has affected turnout in primary and general elections between 2006 and 2016 while controlling for the demographics of voting precincts. This represents a significant data problem; voting precincts changed three times during the time studied and polling places themselves can change every election. To aid in analysis, I created a visualization that allows for the exploration of polling place load, precinct demographics, and polling place accessibility metrics in a map view of the county. I find through a spatial regression model that increasing the load on a polling place can decrease the election-day turnout and prohibitively large distances to the polling place have a similar effect. The effect is more pronounced during general elections and is present at varying levels during each of the 12 elections studied. Finally, I discuss how early voting options appear to have little positive effect on overall turnout and may in fact decrease it.
Date Created
2017-12
Agent

Visual Analytics and the Impact of Inter-Country Trade on Violence

134294-Thumbnail Image.png
Description
Global violent conflict has become an increasing problem in recent decades, especially in the African continent. Civil wars, terrorism, riots, and political violence has wrought havoc not only on civilian lives, but also on economic foundations. Trade networks are a

Global violent conflict has become an increasing problem in recent decades, especially in the African continent. Civil wars, terrorism, riots, and political violence has wrought havoc not only on civilian lives, but also on economic foundations. Trade networks are a way to measure these economic foundations. To summarize trade networks clustering coefficient as well as trade quantity/value summation measures are used. To understand effects of global trade on violent conflict, Pearson product-moment correlations are utilized. This work details a comparison of African national economies and violent conflict events using clustering coefficient, trade summation measures and Pearson correlation coefficient.
Date Created
2017-05
Agent

Visual Analytic Tools for Geo-Genealogy and Geo-Demographics

137197-Thumbnail Image.png
Description
This work explores the development of a visual analytics tool for geodemographic exploration in an online environment. We mine 78 million records from the United States white pages, link the location data to demographic data (specifically income) from the United

This work explores the development of a visual analytics tool for geodemographic exploration in an online environment. We mine 78 million records from the United States white pages, link the location data to demographic data (specifically income) from the United States Census Bureau, and allow users to interactively compare distributions of names with regards to spatial location similarity and income. In order to enable interactive similarity exploration, we explore methods of pre-processing the data as well as on-the-fly lookups. As data becomes larger and more complex, the development of appropriate data storage and analytics solutions has become even more critical when enabling online visualization. We discuss problems faced in implementation, design decisions and directions for future work.
Date Created
2014-05
Agent

First Impressions: A Multimodal Analysis of Movie Trailers and Film Success

137156-Thumbnail Image.png
Description
Due to the popularity of the movie industry, a film's opening weekend box-office performance is of great interest not only to movie studios, but to the general public, as well. In hopes of maximizing a film's opening weekend revenue, movie

Due to the popularity of the movie industry, a film's opening weekend box-office performance is of great interest not only to movie studios, but to the general public, as well. In hopes of maximizing a film's opening weekend revenue, movie studios invest heavily in pre-release advertisement. The most visible advertisement is the movie trailer, which, in no more than two minutes and thirty seconds, serves as many people's first introduction to a film. The question, however, is how can we be confident that a trailer will succeed in its promotional task, and bring about the audience a studio expects? In this thesis, we use machine learning classification techniques to determine the effectiveness of a movie trailer in the promotion of its namesake. We accomplish this by creating a predictive model that automatically analyzes the audio and visual characteristics of a movie trailer to determine whether or not a film's opening will be successful by earning at least 35% of a film's production budget during its first U.S. box office weekend. Our predictive model performed reasonably well, achieving an accuracy of 68.09% in a binary classification. Accuracy increased to 78.62% when including genre in our predictive model.
Date Created
2014-05
Agent

The Emblems: OpenGL

137149-Thumbnail Image.png
Description
The project, "The Emblems: OpenGL" is a 2D strategy game that incorporates Speech Recognition for control and OpenGL for computer graphics. Players control their own army by voice commands and try to eliminate the opponent's army. This report focuses on

The project, "The Emblems: OpenGL" is a 2D strategy game that incorporates Speech Recognition for control and OpenGL for computer graphics. Players control their own army by voice commands and try to eliminate the opponent's army. This report focuses on the 2D art and visual aspects of the project. There are different sprites for the player's army units and icons within the game. The game also has a grid for easy unit placement.
Date Created
2014-05
Agent

The Emblems: Speech-Recognition in Games

137137-Thumbnail Image.png
Description
Speech recognition in games is rarely seen. This work presents a project, a 2D computer game named "The Emblems" which utilizes speech recognition as input. The game itself is a two person strategy game whose goal is to defeat the

Speech recognition in games is rarely seen. This work presents a project, a 2D computer game named "The Emblems" which utilizes speech recognition as input. The game itself is a two person strategy game whose goal is to defeat the opposing player's army. This report focuses on the speech-recognition aspect of the project. The players interact on a turn-by-turn basis by speaking commands into the computer's microphone. When the computer recognizes a command, it will respond accordingly by having the player's unit perform an action on screen.
Date Created
2014-05
Agent

SeeSick: A Mobile Application for Tracking and Visualizing the Spread of Illnesses in Real Time

Description
With the population size growing rapidly at Arizona State University, students are more likely to get sick and miss school when living on campus. The purpose of this project was to design a mobile web application called, SeeSick, that would

With the population size growing rapidly at Arizona State University, students are more likely to get sick and miss school when living on campus. The purpose of this project was to design a mobile web application called, SeeSick, that would visualize the spread of illness on the ASU Tempe campus. This application would provide students with information that could help prevent the spread of illness and allow them to take actionable steps for staying healthy. To accomplish the design and testing of this application, research was conducted on how technology is currently used by students when they are sick, how to design an effective user interface for ASU students, how to physically visualize the spread of the flu on an app, and if an application like this would be useful. The visualizations are created from a user input form and from Twitter data scraping and are displayed on a heat map of the Tempe campus. 126 students were surveyed before the development of the application and once the application was functional, 87 students were interviewed for user testing. Through trial-and-error design and testing, the application was analyzed to determine if it would be used and change behavior. The design of SeeSick successfully provided users with a way to visualize the spread of symptoms on campus and presented them personalized feedback about their symptoms. 62% of students interviewed found the application to be useful and 84% of participants found it easy to use. However, 57% of students said their behavior would not change while using SeeSick. Of the students who tested the application, SeeSick was found to be useful, easy to use, but would not cause behavior change. The current version supports the goal to create a mobile application that tracks the spread of the flu on campus, however it was not tested enough to determine if it would change behavior. With further development and larger testing groups, SeeSick could be improved to not only track the spread of illness on a hyper-local level, but also create actionable steps to prevent the spread of illness.
Date Created
2014-12
Agent

Policy and Place: A Spatial Data Science Framework for Research and Decision-Making

155841-Thumbnail Image.png
Description
A major challenge in health-related policy and program evaluation research is attributing underlying causal relationships where complicated processes may exist in natural or quasi-experimental settings. Spatial interaction and heterogeneity between units at individual or group levels can violate both components

A major challenge in health-related policy and program evaluation research is attributing underlying causal relationships where complicated processes may exist in natural or quasi-experimental settings. Spatial interaction and heterogeneity between units at individual or group levels can violate both components of the Stable-Unit-Treatment-Value-Assumption (SUTVA) that are core to the counterfactual framework, making treatment effects difficult to assess. New approaches are needed in health studies to develop spatially dynamic causal modeling methods to both derive insights from data that are sensitive to spatial differences and dependencies, and also be able to rely on a more robust, dynamic technical infrastructure needed for decision-making. To address this gap with a focus on causal applications theoretically, methodologically and technologically, I (1) develop a theoretical spatial framework (within single-level panel econometric methodology) that extends existing theories and methods of causal inference, which tend to ignore spatial dynamics; (2) demonstrate how this spatial framework can be applied in empirical research; and (3) implement a new spatial infrastructure framework that integrates and manages the required data for health systems evaluation.

The new spatially explicit counterfactual framework considers how spatial effects impact treatment choice, treatment variation, and treatment effects. To illustrate this new methodological framework, I first replicate a classic quasi-experimental study that evaluates the effect of drinking age policy on mortality in the United States from 1970 to 1984, and further extend it with a spatial perspective. In another example, I evaluate food access dynamics in Chicago from 2007 to 2014 by implementing advanced spatial analytics that better account for the complex patterns of food access, and quasi-experimental research design to distill the impact of the Great Recession on the foodscape. Inference interpretation is sensitive to both research design framing and underlying processes that drive geographically distributed relationships. Finally, I advance a new Spatial Data Science Infrastructure to integrate and manage data in dynamic, open environments for public health systems research and decision- making. I demonstrate an infrastructure prototype in a final case study, developed in collaboration with health department officials and community organizations.
Date Created
2017
Agent

Sky View Factors from Synthetic Fisheye Photos for Thermal Comfort Routing: A Case Study in Phoenix, Arizona

141420-Thumbnail Image.png
Description

We generated 5-meter resolution SVF maps for two neighborhoods in Phoenix, Arizona to illustrate fine-scale variations of intra-urban horizon limitations due to urban form and vegetation.

Date Created
2017-03-17
Agent

Formal Requirements-Driven Analysis of Cyber Physical Systems

155738-Thumbnail Image.png
Description
Testing and Verification of Cyber-Physical Systems (CPS) is a challenging problem. The challenge arises as a result of the complex interactions between the components of these systems: the digital control, and the physical environment. Furthermore, the software complexity that governs

Testing and Verification of Cyber-Physical Systems (CPS) is a challenging problem. The challenge arises as a result of the complex interactions between the components of these systems: the digital control, and the physical environment. Furthermore, the software complexity that governs the high-level control logic in these systems is increasing day by day. As a result, in recent years, both the academic community and the industry have been heavily invested in developing tools and methodologies for the development of safety-critical systems. One scalable approach in testing and verification of these systems is through guided system simulation using stochastic optimization techniques. The goal of the stochastic optimizer is to find system behavior that does not meet the intended specifications.

In this dissertation, three methods that facilitate the testing and verification process for CPS are presented:

1. A graphical formalism and tool which enables the elicitation of formal requirements. To evaluate the performance of the tool, a usability study is conducted.

2. A parameter mining method to infer, analyze, and visually represent falsifying ranges for parametrized system specifications.

3. A notion of conformance between a CPS model and implementation along with a testing framework.

The methods are evaluated over high-fidelity case studies from the industry.
Date Created
2017
Agent