137156-Thumbnail Image.png
Description
Due to the popularity of the movie industry, a film's opening weekend box-office performance is of great interest not only to movie studios, but to the general public, as well. In hopes of maximizing a film's opening weekend revenue, movie

Due to the popularity of the movie industry, a film's opening weekend box-office performance is of great interest not only to movie studios, but to the general public, as well. In hopes of maximizing a film's opening weekend revenue, movie studios invest heavily in pre-release advertisement. The most visible advertisement is the movie trailer, which, in no more than two minutes and thirty seconds, serves as many people's first introduction to a film. The question, however, is how can we be confident that a trailer will succeed in its promotional task, and bring about the audience a studio expects? In this thesis, we use machine learning classification techniques to determine the effectiveness of a movie trailer in the promotion of its namesake. We accomplish this by creating a predictive model that automatically analyzes the audio and visual characteristics of a movie trailer to determine whether or not a film's opening will be successful by earning at least 35% of a film's production budget during its first U.S. box office weekend. Our predictive model performed reasonably well, achieving an accuracy of 68.09% in a binary classification. Accuracy increased to 78.62% when including genre in our predictive model.
613.4 KB application/pdf

Download restricted. Please sign in.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Details

Title
  • First Impressions: A Multimodal Analysis of Movie Trailers and Film Success
Contributors
Date Created
2014-05
Resource Type
  • Text
  • Machine-readable links