Fresnel Lens Solar Concentrator Application for Cement Production

168390-Thumbnail Image.png
Description
Concentrating solar thermal power systems gained a wide interest for a long time to serve as a renewable and sustainable alternate source of energy. While the optimization and modification are ongoing, focused generally on solar power systems to provide solar-electrical

Concentrating solar thermal power systems gained a wide interest for a long time to serve as a renewable and sustainable alternate source of energy. While the optimization and modification are ongoing, focused generally on solar power systems to provide solar-electrical energy or solar-thermal energy, the production process of Ordinary Portland Cement (OPC) has not changed over the past century. A linear refractive Fresnel lens application in cement production process is investigated in this research to provide the thermal power required to raise the temperature of lime up to 623 K (350C) with zero carbon emissions for stage two in a new proposed two-stage production process. The location is considered to be Phoenix, Arizona, with a linear refractive Fresnel lens facing south, tilted 33.45 equaling the location latitude, and concentrating solar beam radiation on an evacuated tube collector with tracking system continuously rotating about the north-south axis. The mathematical analysis showed promising results based on averaged monthly values representing an average hourly useful thermal power and receiver temperature during day-light hours for each month throughout the year. The maximum average hourly useful thermal power throughout the year was obtained for June as 33 kWth m-2 with a maximum receiver temperature achieved of 786 K (513C), and the minimum useful thermal power obtained during the month of December with 27 kWth m-2 and a minimum receiver temperature of 701 K (428C).
Date Created
2021
Agent