Description
Concentrating solar thermal power systems gained a wide interest for a long time to serve as a renewable and sustainable alternate source of energy. While the optimization and modification are ongoing, focused generally on solar power systems to provide solar-electrical energy or solar-thermal energy, the production process of Ordinary Portland Cement (OPC) has not changed over the past century. A linear refractive Fresnel lens application in cement production process is investigated in this research to provide the thermal power required to raise the temperature of lime up to 623 K (350C) with zero carbon emissions for stage two in a new proposed two-stage production process. The location is considered to be Phoenix, Arizona, with a linear refractive Fresnel lens facing south, tilted 33.45 equaling the location latitude, and concentrating solar beam radiation on an evacuated tube collector with tracking system continuously rotating about the north-south axis. The mathematical analysis showed promising results based on averaged monthly values representing an average hourly useful thermal power and receiver temperature during day-light hours for each month throughout the year. The maximum average hourly useful thermal power throughout the year was obtained for June as 33 kWth m-2 with a maximum receiver temperature achieved of 786 K (513C), and the minimum useful thermal power obtained during the month of December with 27 kWth m-2 and a minimum receiver temperature of 701 K (428C).
Details
Title
- Fresnel Lens Solar Concentrator Application for Cement Production
Contributors
- Alkhuwaiteem, Mohammad (Author)
- Phelan, Patrick (Thesis advisor)
- Shuaib, Abdelrahman (Committee member)
- Neithalath, Narayanan (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2021
Subjects
Resource Type
Collections this item is in
Note
- Partial requirement for: M.S., Arizona State University, 2021
- Field of study: Mechanical Engineering