Augmented Permittivity and Complex Self-Assembly in Zwitterionic Block Polymers

193451-Thumbnail Image.png
Description
The properties of block polymers (BPs) are intricately coupled to the dynamic and rich nature of the nanostructured assemblies which result from the phase separation between blocks. The introduction of strong secondary forces, such as electrostatics and hydrogen bonding, into

The properties of block polymers (BPs) are intricately coupled to the dynamic and rich nature of the nanostructured assemblies which result from the phase separation between blocks. The introduction of strong secondary forces, such as electrostatics and hydrogen bonding, into block polymers greatly influences their self-assembly behavior, and therefore affects their physical and electrochemical properties often in non-trivial ways. The recent surge of work expanding scientific understanding of complex spherical packing in block polymers (BPs) has unlocked new design space for the development of advanced soft materials. The continuous matrix phase which percolates throughout spherical morphologies is ideal for many applications involving transport of ions or other small molecules. Thus, determining the accessible parameter range of such morphologies is desirable. Bulk zwitterion-containing BPs hold great potential within the realm of electroactive materials while remaining relatively untapped. In this work, architecturally and compositionally asymmetric diblock polymers were prepared with the majority block having zwitterions tethered to side chain termini at different ratios. Thermally reversible Frank-Kasper phases are observed in multiple samples with significant signs of kinetic arrest and influence. The kinetic influences are validated and described by the temperature-dependent static permittivity. Polyzwitterions combine the attractive features of zwitterions with the mechanical support and processability of polymeric materials. Among these attractive features is a potential for superior permittivity which is limited by the propensity of zwitterions to pack into strongly associating structures. Block polymer self-assembly embodies a plethora of packing frustration opportunities for optimizing polyzwitterion permittivity. The capabilities of this novel approach are revealed here, where the permittivity of a polyzwitterionic block is enhanced to a level comparable to that of pure liquid zwitterions near room temperature (εs ~ 250), but with less than a third the zwitterion concentration. The mechanistic source of permittivity enhancement from a single zwitterion-tethered block polymer is realized deductively through a series of thermal pathways and control sample experiments. Tethered zwitterions within the mixed block interface are frustrated when subject to segmental segregation under sufficient interfacial tension and packing while non-interfacial zwitterions contribute very little to permittivity, highlighting the potential for improvement by several fold.
Date Created
2024
Agent

Depolymerizable supramolecular polyethylene from bio-inspired nucleobase units

Description
Given their manufacturing versatility, plastics have fundamentally changed commercial consumerism. Unfortunately, two of the largest drawbacks to current plastics on the market is their dependency on fossil fuels and their lack of circular recyclability. In this paper, the focus will

Given their manufacturing versatility, plastics have fundamentally changed commercial consumerism. Unfortunately, two of the largest drawbacks to current plastics on the market is their dependency on fossil fuels and their lack of circular recyclability. In this paper, the focus will be on the latter issue. Circular recyclability can be described as the idea of minimizing waste through its reformation back into a commodity. Currently, the primary method of recycling plastics, mechanical recycling, can only be achieved through melting and reshaping plastic for reuse. A significant drawback to this method is the reduction in chain molecular weight and subsequent loss of mechanical integrity through multiple reheating cycles. Chemical recycling provides an alternative where the polymer is broken down through chemically reactive sites, allowing the material to be recycled a theoretically infinite number of times and maintain its mechanical properties. Polyethylene, one of the largest classes of industrially produced plastic, does not have any commercially relevant chemically recyclable derivatives. The structure of polyethylene is primarily composed of long, nonpolar hydrocarbon chains that provide the material’s signature tough property. To make a material that can be depolymerizable for chemical recycling, polar ester functional groups must be added throughout the chain, allowing for chain scission by hydrolysis. Unfortunately, while the incorporation of ester functionality into polyethylene has been studied previously, material strength decreases as a result of this modification, sacrificing the integrity of the final product. Herein, I propose the incorporation of nucleobase pairings into the ester-containing polyethylene, which will add supramolecular hydrogen bonding reinforcements to improve the mechanical performance while maintaining chemical recyclability. This addition to the polyethylene backbone will be achieved by the synthesis of a ureido cytosine (UCy) diol, which contains 4 complementary hydrogen bonding sites for enhanced intermolecular forces between polyethylene chains.
Date Created
2024-05
Agent

Rapid Water Tolerant Cationic RAFT Photopolymerization

189260-Thumbnail Image.png
Description
In the search for ever more sustainable manufacturing techniques, additive manufacturing through light driven 3D printing processes is growing rapidly as a field, specifically the production of “living” materials which can be repaired and or reprocessed through the reactivation of

In the search for ever more sustainable manufacturing techniques, additive manufacturing through light driven 3D printing processes is growing rapidly as a field, specifically the production of “living” materials which can be repaired and or reprocessed through the reactivation of polymer chain ends. Currently research in the production of these living materials is largely focused on radical polymerization methods. Cationic polymerizations have been developed for this purpose, although there is still much work to be done. This work seeks to explore a transition-metal free system to produce living materials through cationic reversible addition fragmentation chain-transfer (C-RAFT).Cationic polymerization is known for its rapid propagation. This is due to the highly reactive active center which also readily reacts with nucleophiles in unwanted chain transfer reactions. For this reason, reagents in living cationic polymerizations are subject to rigorous purification steps involving the distillation of monomer and solvent, freeze—pump—thaw cycles, and running the reaction under an inert environment1. These restrictions make living cationic polymerizations unattractive for 3D printing processes. New systems for rapid water tolerant C-RAFT photopolymerization will provide for new materials to be produced through this more sustainable manufacturing process. In this work, living cationic polymerization of isobutyl vinyl ether (IBVE) is achieved using a synthesized cationic RAFT agent and an initiating system consisting of camphorquinone (CQ), ethyl 4-(dimethylamino)benzoate, and iodonium salt HNu-254. Molecular weights of 12 kg/mol are achieved with a dispersity of 1.4. The polymerization mechanism is probed and shows rapid kinetics consistent with living polymerizations in addition to photo-controllability as indicated by light on-off experiments. Chain extension experiments display re-activation of the trithiocarbonate chain end. This feature is then used to produce block-copolymers using ethyl vinyl ether and cyclohexyl vinyl ether.
Date Created
2023
Agent

Structure-property-function Relationships for Segmented Ionenes

187711-Thumbnail Image.png
Description
There are limited analyses of the properties of segmented ionenes on the influence of the type, structure, content of soft/hard segments, and type of counterions through direct comparisons, which are needed for a diverse set of applications. This dissertation research

There are limited analyses of the properties of segmented ionenes on the influence of the type, structure, content of soft/hard segments, and type of counterions through direct comparisons, which are needed for a diverse set of applications. This dissertation research focuses on resolving the gaps in the structure-property-function relationship of segmented ionenes. First, the synthesis of novel segmented ionenes using step-growth polymerization via the Menshutkin reaction of ditertiary amines and alkyl dihalides was performed with PEG soft segment with three different content of soft/hard segments, 25, 50, and 75 wt%, and two different hard segments, linear aliphatic and heterocyclic aliphatic hard segments. The content of the soft segment influenced the degree of phase separation and ionic aggregation which affected the thermomechanical properties of segmented ionenes. In addition, the crystallization of the soft segment influenced the mechanical properties of the ionenes. Second, the effect of the type of the soft segment was investigated by analyzing the novel PTMO-based segmented ionenes possessing three different content of soft/hard segments, as well as two different hard segments. The heterocyclic aliphatic hard segment provided a better degree of phase separation compared to the linear aliphatic hard segment irrespective of the type of soft segment, PEG, or PTMO. Moreover, the type and content of hard segments not only affected the thermal and mechanical properties but also the morphology of the segmented ionenes significantly that even inducing an ordered morphology. Third, the counter-anion metathesis was performed with PEG- and PTMO-based segmented ionenes possessing two structurally different hard segments to investigate the effect of the type of counter-anions with a direct comparison of the type of soft and hard segments. The type of counterion significantly influenced the thermomechanical properties of the segmented ionenes, and the degree of phase separation of different types of counter-anions was dependent on the type of soft and hard segments. The results of this dissertation provide fundamental insights into the correlations between each factor that influences the properties of the segmented ionenes and enable the design of segmented ionenes for a diverse range of applications.
Date Created
2023
Agent

Transition Metal Catalyzed Depolymerization of Polyethylene Terephthalate and Synthesis of a Novel Redox-Active Ligand

Description

Post-consumer plastic and polymer waste accumulation in recent years continues to become more of a problem. One of the common polymers that has become ubiquitous to modern life is polyethylene terephthalate, a polymer that makes up 6.2% of all polymers

Post-consumer plastic and polymer waste accumulation in recent years continues to become more of a problem. One of the common polymers that has become ubiquitous to modern life is polyethylene terephthalate, a polymer that makes up 6.2% of all polymers produced and only 39% of which is recycled in the US annually.1,5 In this study a new catalyst was for the methanolysis of PET and compared to a common organic base, 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), that has been used in academia and industry for the depolymerization of PET. In this study it was concluded that yttrium (III) acetylacetonate hydrate was a more active catalyst for the methanolysis of PET at 120 °C in comparison to TBD. It was also determined that there is no co-catalytic effect between yttrium (III) acetylacetonate hydrate and TBD when used in combination. The use of manganese (II) acetate tetrahydrate was also explored as a potential catalyst and was found to shown significant reactivity. However, it was concluded that the optimal conditions for PET methanolysis had not been reached and that further research into reaction times as well as co-solvents needs to be conducted. The synthesis of a novel o-phenylenediamine ligand functionalized with a labile phosphine substituent was also explored with the end goal of metalation and implementation in the methanolysis of PET. It has been assumed through nuclear magnetic resonance spectroscopy (NMR) characterization that the N,N’-(1,2-phenylenediamine)bis[3-(diphenylphosphanyl)-propanamide]-borane precursor was successfully synthesized and isolated. The subsequent deprotection of the N,N’-(1,2-phenylenediamine)bis[3-(diphenylphosphanyl)-propanamide]-borane complex was performed but has not been fully characterized. The 31P NMR does indicate a fully deprotected tertiary organophosphine. Through this work a detailed procedure for the ligand precursor has been laid out and developed so that the synthesis may now be scaled up, further characterized, metalated, and used to support catalysis.

Date Created
2023-05
Agent

An Integrated Biological Process for the Valorization of Lignin to Polyvinyl Phenol

165170-Thumbnail Image.png
Description
Phenolic polymers such as polyphenols and polyphenylenes are generated industrially for several applications but are typically associated with harsh reaction conditions and environmentally hazardous chemicals, such as formaldehyde. Additionally, hydroxycinnamic acids, such as p-coumaric acid (CA), are found in high

Phenolic polymers such as polyphenols and polyphenylenes are generated industrially for several applications but are typically associated with harsh reaction conditions and environmentally hazardous chemicals, such as formaldehyde. Additionally, hydroxycinnamic acids, such as p-coumaric acid (CA), are found in high concentrations in underutilized lignin-derived hydrolysates and represent a renewable and sustainable feedstock for the production of various aromatics and phenolics. To that end, recently a strain of Corynebacterium glutamicum has been developed by the Joint Bioenergy Institute to express a Phenolic Acid Decarboxylase (PAD), which can convert CA into 4-vinylphenol (4VP). 4VP is cytotoxic but can be polymerized by ligninolytic enzymes such as laccases or peroxidases into less-toxic poly(4-vinylphenol) (PVP). This work investigates the potential of polymerizing 4VP in situ by adding ligninolytic enzymes into the fermentation media to polymerize 4VP into PVP as it is produced, while reducing cellular toxicity to aid in chemical conversion. The engineered C. glutamicum strain was cultured in the presence of CA to produce 4VP, with a maximum yield of 80.75%. Simultaneously, two ligninolytic enzymes, laccase and horseradish peroxidase (HRP), were explored in an in vitro experiment for their ability to polymerize 4VP, with laccase achieving full polymerization within 45 minutes and HRP able to polymerize 54.06% of 4VP in 24 hours. The resulting polymers were further analyzed by using gas permeation chromatography - nuclear magnetic resonance, validating the synthesis of PVP from 4VP with the addition of laccase or HRP. Finally, the C. glutamicum strain was evaluated for its ability to grow in the presence of hydrogen peroxide, which is a necessary reagent for HRP functionality, and it was able to reach an optical density of 3.69 within 36 hours. These findings suggest that in situ polymerization may be possible. Further work is underway to explore the enzyme kinetics at different pH, validate the potential of polymerization in situ, and study the fermentative benefits associated with in situ polymerization. This will be followed by additional analytical studies to characterize the resulting PVP.
Date Created
2022-05
Agent

Research and Development of a UV Assisted Direct Ink Write 3D Printer

Description

I worked with Professor Long and the Long research group in the Biodesign Institute to develop an ultra-violet assisted direct ink write 3D printer to 3D print poly(amic acid) pendant salts for their group. The project included a proof of

I worked with Professor Long and the Long research group in the Biodesign Institute to develop an ultra-violet assisted direct ink write 3D printer to 3D print poly(amic acid) pendant salts for their group. The project included a proof of concept small format 3D printer and then the development of the full scale printer. I wrote custom code to run the printer and create complex models as well as code to automatic dispense the viscous polymer we were using.

Date Created
2021-12
Agent